首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
We formulate the set partitioning problem as a matching problem with simple side constraints. As a result we obtain a Lagrangian relaxation of the set partitioning problem in which the primal problem is a matching problem. To solve the Lagrangian dual we must solve a sequence of matching problems each with different edge-weights. We use the cyclic coordinate method to iterate the multipliers, which implies that successive matching problems differ in only two edge-weights. This enables us to use sensitivity analysis to modify one optimal matching to obtain the next one. We give theoretical and empirical comparisons of these dual bounds with the conventional linear programming ones.  相似文献   

2.
This paper presents an algorithm for solving the integer programming problem possessing a separable nonlinear objective function subject to linear constraints. The method is based on a generalization of the Balas implicit enumeration scheme. Computational experience is given for a set of seventeen linear and seventeen nonlinear test problems. The results indicate that the algorithm can solve the nonlinear integer programming problem in roughly the equivalent time required to solve the linear integer programming problem of similar size with existing algorithms. Although the algorithm is specifically designed to solve the nonlinear problem, the results indicate that the algorithm compares favorably with the Branch and Bound algorithm in the solution of linear integer programming problems.  相似文献   

3.
Clustering problems are often difficult to solve due to nonlinear cost functions and complicating constraints. Set partitioning formulations can help overcome these challenges, but at the cost of a very large number of variables. Therefore, techniques such as delayed column generation must be used to solve these large integer programs. The underlying pricing problem can suffer from the same challenges (non‐linear cost, complicating constraints) as the original problem, however, making a mathematical programming approach intractable. Motivated by a real‐world problem in printed circuit board (PCB) manufacturing, we develop a search‐based algorithm (Rank‐Cluster‐and‐Prune) as an alternative, present computational results for the PCB problem to demonstrate the tractability of our approach, and identify a broader class of clustering problems for which this approach can be used. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

4.
This paper presents an application of a method for finding the global solution to a problem in integers with a separable objective function of a very general form. This report shows that there is a relationship between an integer problem with a separable nonlinear objective function and many constraints and a series of nonlinear problems with only a single constraint, each of which can be solved sequentially using dynamic programming. The first solution to any of the individual smaller problems that satisfies the original constraints in addition, will be the optimal solution to the multiply-constrained problem.  相似文献   

5.
The reformulation‐linearization technique (RLT) is a methodology for constructing tight linear programming relaxations of mixed discrete problems. A key construct is the multiplication of “product factors” of the discrete variables with problem constraints to form polynomial restrictions, which are subsequently linearized. For special problem forms, the structure of these linearized constraints tends to suggest that certain classes may be more beneficial than others. We examine the usefulness of subsets of constraints for a family of 0–1 quadratic multidimensional knapsack programs and perform extensive computational tests on a classical special case known as the 0–1 quadratic knapsack problem. We consider RLT forms both with and without these inequalities, and their comparisons with linearizations derived from published methods. Interestingly, the computational results depend in part upon the commercial software used. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

6.
运载火箭最优上升轨道设计问题是一类终端时刻未定、终端约束苛刻的最优控制问题,经典算法求解这类问题时收敛性差、局部收敛等问题表现得比较突出。针对上述问题,将具有良好全局收敛性的遗传算法应用到运载火箭最优上升段设计问题求解中,为了提高遗传算法的收敛速度和克服早熟问题,结合遗传算法和单纯型算法的优点,设计了两种混合遗传算法。计算结果表明,所设计的混合遗传算法是求解复杂问题的有效全局优化方法,可以成功地解决一类终端时刻可变飞行器最优控制问题。  相似文献   

7.
导弹作战任务规划是一个涉及时间、资源、质量和其他关系约束的复杂问题。首先通过定义约束满足效用对基本约束满足模型进行了扩展,建立了导弹任务规划的约束满足优化模型。在此基础上,研究了任务规划模型求解的时间和效用传播算法,提出了基于综合效用的优化求解框架。该模型和求解框架易于解决具有多种约束因素的复杂问题,具有较好的通用性。通过定义软、硬约束效用,使得实际任务规划问题求解具有更好的灵活性。  相似文献   

8.
Several problems in the assignment of parallel redundant components to systems composed of elements subject to failure are considered. In each case the problem is to make an assignment which maximizes the system reliability subject to system constraints. Three distinct problems; are treated. The first is the classical problem of maximizing system reliability under total cost or weight constraints when components are subject to a single type of failure. The second problem deals with components which are subject to two types of failure and minimizes the probability of one mode of system failure subject to a constraint on the probability of the other mode of system failure. The third problem deals with components which may either fail to operate or may operate prematurely. System reliability is maximized subject to a constraint ori system safety. In each case the problem is formulated as an integer linear program. This has an advantage over alternative dynamic programming formulations in that standard algorithms may be employed to obtain numerical results.  相似文献   

9.
刘峰  胡非 《防化研究》2006,(1):13-18
从描述烟幕扩散的基本方程出发,提出了一类烟幕施放的优化问题.文中指出,这类问题由于约束条件为复杂的偏微分方程,计算量很大,难以直接求解.为了解决这一问题,引入了一种伴随方法以降低计算量.推导了三维非平坦地形下大气平流一扩散方程的伴随方程,利用伴随方程和原方程的关系,对优化问题进行了等价变形,大大降低了计算量.最后通过一个算例,对这一方法的有效性进行了演示。  相似文献   

10.
We present an algorithm for solving a specially structured nonlinear integer resource allocation problem. This problem was motivated by a capacity planning study done at a large Health Maintenance Organization in Texas. Specifically, we focus on a class of nonlinear resource allocation problems that involve the minimization of a convex function over one general convex constraint, a set of block diagonal convex constraints, and bounds on the integer variables. The continuous variable problem is also considered. The continuous problem is solved by taking advantage of the structure of the Karush‐Kuhn‐Tucker (KKT) conditions. This method for solving the continuous problem is then incorporated in a branch and bound algorithm to solve the integer problem. Various reoptimization results, multiplier bounding results, and heuristics are used to improve the efficiency of the algorithms. We show how the algorithms can be extended to obtain a globally optimal solution to the nonconvex version of the problem. We further show that the methods can be applied to problems in production planning and financial optimization. Extensive computational testing of the algorithms is reported for a variety of applications on continuous problems with up to 1,000,000 variables and integer problems with up to 1000 variables. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 770–792, 2003.  相似文献   

11.
汽油调合优化模型   总被引:2,自引:0,他引:2       下载免费PDF全文
为了提高炼油厂制订成品油调合方案的科学性,研究了汽油调合优化的非线性规划模型,给出了目标函数和约束条件的具体形式。根据模型特征,选用模拟退火算法对模型求解。最后,通过某炼油厂的一个应用实例验证了上述成品油调合优化模型的有效性。  相似文献   

12.
The loading problem involves the optimal allocation of n objects, each having a specified weight and value, to m boxes, each of specified capacity. While special cases of these problems can be solved with relative ease, the general problem having variable item weights and box sizes can become very difficult to solve. This paper presents a heuristic procedure for solving large loading problems of the more general type. The procedure uses a surrogate procedure for reducing the original problem to a simpler knapsack problem, the solution of which is then employed in searching for feasible solutions to the original problem. The procedure is easy to apply, and is capable of identifying optimal solutions if they are found.  相似文献   

13.
Given a number of patrollers that are required to detect an intruder in a channel, the channel patrol problem consists of determining the periodic trajectories that the patrollers must trace out so as to maximized the probability of detection of the intruder. We formulate this problem as an optimal control problem. We assume that the patrollers' sensors are imperfect and that their motions are subject to turn‐rate constraints, and that the intruder travels straight down a channel with constant speed. Using discretization of time and space, we approximate the optimal control problem with a large‐scale nonlinear programming problem which we solve to obtain an approximately stationary solution and a corresponding optimized trajectory for each patroller. In numerical tests for one, two, and three underwater patrollers, an underwater intruder, different trajectory constraints, several intruder speeds and other specific parameter choices, we obtain new insight—not easily obtained using simply geometric calculations—into efficient patrol trajectory design under certain conditions for multiple patrollers in a narrow channel where interaction between the patrollers is unavoidable due to their limited turn rate.© 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

14.
针对步进电机存在负载摄动和失步超步问题,提出了一种基于粒子群优化算法的混合灵敏度设计方法。在H∞混合灵敏度约束下,采用粒子群算法寻找能够反映系统特性的适应度函数最优值,在搜索到合适的加权阵基础上,利用Matlab得到了H∞最优控制器,并利用优化控制器对步进电机进行控制仿真实验。实验结果表明:该系统具有响应快速平稳、抗负载扰动强等特点。  相似文献   

15.
In this article, we propose a branch‐and‐price‐and‐cut (BPC) algorithm to exactly solve the manpower routing problem with synchronization constraints (MRPSC). Compared with the classical vehicle routing problems (VRPs), the defining characteristic of the MRPSC is that multiple workers are required to work together and start at the same time to carry out a job, that is, the routes of the scheduling subjects are dependent. The incorporation of the synchronization constraints increases the difficulty of the MRPSC significantly and makes the existing VRP exact algorithm inapplicable. Although there are many types of valid inequalities for the VRP or its variants, so far we can only adapt the infeasible path elimination inequality and the weak clique inequality to handle the synchronization constraints in our BPC algorithm. The experimental results at the root node of the branch‐and‐bound tree show that the employed inequalities can effectively improve the lower bound of the problem. Compared with ILOG CPLEX, our BPC algorithm managed to find optimal solutions for more test instances within 1 hour. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 138–171, 2016  相似文献   

16.
Applications for content distribution over networks, such as Video‐on‐Demand (VOD), are expected to grow significantly over time. Effective bandwidth allocation schemes that can be repeatedly executed must be deployed since new programs are often installed at various servers while other are deleted. We present a model for bandwidth allocation in a content distribution network that consists of multiple trees, where the root of each tree has a server that broadcasts multiple programs throughout the tree. Each network link has limited capacity and may be used by one or more of these trees. The model is formulated as an equitable resource allocation problem with a lexicographic maximin objective function that attempts to provide equitable service performance for all requested programs at the various nodes. The constraints include link capacity constraints and tree‐like ordering constraints imposed on each of the programs. We present an algorithm that provides an equitable solution in polynomial time for certain performance functions. At each iteration, the algorithm solves single‐link maximin optimization problems while relaxing the ordering constraints. The algorithm selects a bottleneck link, fixes various variables at their lexicographic optimal solution while enforcing the ordering constraints, and proceeds with the next iteration. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

17.
For a linear fractional programming problem, Sharma and Swarup have constructed a dual problem, also a linear fractional program, in which the objective functions of both primal and dual problems are the same. Craven and Mond have extended this result to a nonlinear fractional programming problem with linear constraints, and a dual problem for which the objective function is the same as that of the primal. This theorem is now further extended from linear to differentiable convex constraints.  相似文献   

18.
Linear programming problems with upper bounded variables can be solved by regular simplex method by considering upper bounding constraints as explicit constraints of the problem. However, more efficient methods exist which consider these upper bound constraints implicitly. When parametric analysis for problems with upper bounds is to be carried out, one can use the regular parameter analysis by considering the upper bound constraints explicitly. This paper develops formulas for parametric analysis where upper bound constraints are used implicitly, thus reducing the size of the basic matrix.  相似文献   

19.
We consider a class of network flow problems with pure quadratic costs and demonstrate that the conjugate gradient technique is highly effective for large-scale versions. It is shown that finding a saddle point for the Lagrangian of an m constraint, n variable network problem requires only the solution of an unconstrained quadratic programming problem with only m variables. It is demonstrated that the number of iterations for the conjugate gradient algorithm is substantially smaller than the number of variables or constraints in the (primal) network problem. Forty quadratic minimum-cost flow problems of various sizes up to 100 nodes are solved. Solution time for the largest problems (4,950 variables and 99 linear constraints) averaged 4 seconds on the CBC Cyber 70 Model 72 computer.  相似文献   

20.
对敌防空压制(suppression of enemy air defenses, SEAD)场景是多无人机协同的典型应用,针对该场景特点,在任务规划问题基础上将各类型无人机数量也作为决策变量,充分表征目标、任务和无人机的多种约束,建立异构无人机编队路径问题模型。设计了双层联合优化方法求解该模型:上层设计了任务衔接参数指标,精确评估各类型无人机需求,指导无人机配置调整;下层设计了改进遗传算法,高效处理多类型约束并能结合无人机数量变化对任务方案进行精细调整;双层相互协调获得满足需求的无人机配置和执行方案。仿真结果表明,该方法可以在避免遍历无人机配置组合的前提下获得合理的无人机配置方案和高效可行的执行方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号