首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In this article, we propose a branch‐and‐price‐and‐cut (BPC) algorithm to exactly solve the manpower routing problem with synchronization constraints (MRPSC). Compared with the classical vehicle routing problems (VRPs), the defining characteristic of the MRPSC is that multiple workers are required to work together and start at the same time to carry out a job, that is, the routes of the scheduling subjects are dependent. The incorporation of the synchronization constraints increases the difficulty of the MRPSC significantly and makes the existing VRP exact algorithm inapplicable. Although there are many types of valid inequalities for the VRP or its variants, so far we can only adapt the infeasible path elimination inequality and the weak clique inequality to handle the synchronization constraints in our BPC algorithm. The experimental results at the root node of the branch‐and‐bound tree show that the employed inequalities can effectively improve the lower bound of the problem. Compared with ILOG CPLEX, our BPC algorithm managed to find optimal solutions for more test instances within 1 hour. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 138–171, 2016  相似文献   

2.
This article presents a simple proof of Hu's algorithm for scheduling in minimum time a set of tasks constrained by precedence tree constraints, each task requiring a unit time to complete, and where m processors are available.  相似文献   

3.
In this journal in 1967. Szware presented an algorithm for the optimal routing of a common vehicle fleet between m sources and n sinks with p different types of commodities. The main premise of the formulation is that a truck may carry only one commodity at a time and must deliver the entire load to one demand area. This eliminates the problem of routing vehicles between sources or between sinks and limits the problem to the routing of loaded trucks between sources and sinks and empty trucks making the return trip. Szwarc considered only the transportation aspect of the problem (i. e., no intermediate points) and presented a very efficient algorithm for solution of the case he described. If the total supply is greater than the total demand, Szwarc shows that the problem is equivalent to a (mp + n) by (np + m) Hitchcock transportation problem. Digital computer codes for this algorithm require rapid access storage for a matrix of size (mp + n) by (np + m); therefore, computer storage required grows proportionally to p2. This paper offers an extension of his work to a more general form: a transshipment network with capacity constraints on all arcs and facilities. The problem is shown to be solvable directly by Fulkerson's out-of-kilter algorithm. Digital computer codes for this formulation require rapid access storage proportional to p instead of p2. Computational results indicate that, in addition to handling the extensions, the out-of-kilter algorithm is more efficient in the solution of the original problem when there is a mad, rate number of commodities and a computer of limited storage capacity.  相似文献   

4.
This article addresses a single‐item, finite‐horizon, periodic‐review coordinated decision model on pricing and inventory control with capacity constraints and fixed ordering cost. Demands in different periods are random and independent of each other, and their distributions depend on the price in the current period. Each period's stochastic demand function is the additive demand model. Pricing and ordering decisions are made at the beginning of each period, and all shortages are backlogged. The objective is to find an optimal policy that maximizes the total expected discounted profit. We show that the profit‐to‐go function is strongly CK‐concave, and the optimal policy has an (s,S,P) ‐like structure. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

5.
There has been much research on the general failure model recently. In the general failure model, when the unit fails at its age t, Type I failure (minor failure) occurs with probability 1 ? p(t) and Type II failure (catastrophic failure) occurs with probability p(t). In the previous research, some specific shapes (constant, non‐decreasing, or bathtub‐shape) on the probability function p(t) are assumed. In this article, general results on some probability functions are obtained and applied to study the shapes of p(t). The results are also applied to determining the optimal inspection and allocation policies in maintenance problems. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

6.
In this paper we study the scheduling problem that considers both production and job delivery at the same time with machine availability considerations. Only one vehicle is available to deliver jobs in a fixed transportation time to a distribution center. The vehicle can load at most K jobs as a delivery batch in one shipment due to the vehicle capacity constraint. The objective is to minimize the arrival time of the last delivery batch to the distribution center. Since machines may not always be available over the production period in real life due to preventive maintenance, we incorporate machine availability into the models. Three scenarios of the problem are studied. For the problem in which the jobs are processed on a single machine and the jobs interrupted by the unavailable machine interval are resumable, we provide a polynomial algorithm to solve the problem optimally. For the problem in which the jobs are processed on a single machine and the interrupted jobs are nonresumable, we first show that the problem is NP‐hard. We then propose a heuristic with a worst‐case error bound of 1/2 and show that the bound is tight. For the problem in which the jobs are processed on either one of two parallel machines, where only one machine has an unavailable interval and the interrupted jobs are resumable, we propose a heuristic with a worst‐case error bound of 2/3. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

7.
The focus of this research is on self-contained missions requiring round-trip vehicle travel from a common origin. For a single vehicle the maximal distance that can be reached without refueling is defined as its operational range. Operational range is a function of a vehicle's fuel capacity and fuel consumption characteristics. In order to increase a vehicle's range beyond its operational range replenishment from a secondary fuel source is necessary. In this article, the problem of maximizing the range of any single vehicle from a fleet of n vehicles is investigated. This is done for four types of fleet configurations: (1) identical vehicles, (2) vehicles with identical fuel consumption rates but different fuel capacities, (3) vehicles which have the same fuel capacity but different fuel consumption rates, and (4) vehicles with both different fuel capacities and different consumption rates. For each of the first three configurations the optimal refueling policy that provides the maximal range is determined for a sequential refueling chain strategy. In such a strategy the last vehicle to be refueled is the next vehicle to transfer its fuel. Several mathematical programming formulations are given and their solutions determined in closed form. One of the major conclusions is that for an identical fleet the range of the farthest vehicle can be increased by at most 50% more than the operational range of a single vehicle. Moreover, this limit is reached very quickly with small values of n. The performance of the identical fleet configuration is further investigated for a refueling strategy involving a multiple-transfer refueling chain, stochastic vehicle failures, finite refueling times, and prepositioned fleets. No simple refueling ordering rules were found for the most general case (configuration 4). In addition, the case of vehicles with different fuel capacities is investigated under a budget constraint. The analysis provides several benchmarks or bounds for which more realistic structures may be compared. Some of the more complex structures left for future study are described.  相似文献   

8.
We study a parallel machine scheduling problem, where a job j can only be processed on a specific subset of machines Mj, and the Mj subsets of the n jobs are nested. We develop a two‐phase heuristic for minimizing the total weighted tardiness subject to the machine eligibility constraints. In the first phase, we compute the factors and statistics that characterize a problem instance. In the second phase, we propose a new composite dispatching rule, the Apparent Tardiness Cost with Flexibility considerations (ATCF) rule, which is governed by several scaling parameters of which the values are determined by the factors obtained in the first phase. The ATCF rule is a generalization of the well‐known ATC rule which is very widely used in practice. We further discuss how to improve the dispatching rule using some simple but powerful properties without requiring additional computation time, and the improvement is quite satisfactory. We apply the Sequential Uniform Design Method to design our experiments and conduct an extensive computational study, and we perform tests on the performance of the ATCF rule using a real data set from a large hospital in China. We further compare its performance with that of the classical ATC rule. We also compare the schedules improved by the ATCF rule with what we believe are Near Optimal schedules generated by a general search procedure. The computational results show that especially with a low due date tightness, the ATCF rule performs significantly better than the well‐known ATC rule generating much improved schedules that are close to the Near Optimal schedules. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 249–267, 2017  相似文献   

9.
The transportation model with supplies (Si) and demands (Di) treated as bounded variables developed by Charnes and Klingman is extended to the case where the Si and Di are independently and uniformly distributed random variables. Chance constraints which require that demand at the jth destination will be satisfied with probability at least βi and that stockout at the ith origin will occur with probability less than αi are imposed. Conversion of the chance constraints to their linear equivalents results in a transportation problem with one more row and column than the original with some of the new arcs capacitated. The chance-constrained formulation is extended to the transshipment problem.  相似文献   

10.

This article delineates the history of how disarmament became a concept in economic thought and reviews the relevant writings of economists such as Veblen, Wicksell, Pareto, Schumpeter, Hilferding, Luxemburg, Lenin, Bukharin, Sombart, Keynes, Pigou, and Robbins, and of selected classical precursors (e.g., Smith, Ricardo, Malthus, List, Marx/Engels) as well as post-World War II writers (e.g., Richardson, Boulding, Hirshleifer). Particular attention is paid to how the "markets-as-peace" versus "capitalism-as-war" dichotomy developed, a dichotomy reflected in the contemporary debate on the relative merits or demerits of "globalization".  相似文献   

11.
This article studies the classical single‐item economic lot‐sizing problem with constant capacities, fixed‐plus‐linear order costs, and concave inventory costs, where backlogging is allowed. We propose an O(T3) optimal algorithm for the problem, which improves upon the O(T4) running time of the famous algorithm developed by Florian and Klein (Manage Sci18 (1971) 12–20). Instead of using the standard dynamic programming approach by predetermining the minimal cost for every possible subplan, we develop a backward dynamic programming algorithm to obtain a more efficient implementation. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

12.
This article analyzes the American intervention in Nazi-oppressed Europe during World War II and the way in which this intervention is represented in film. Examining the visual and cinematic aesthetics of Saving Private Ryan and the mini-series Band of Brothers, the article seeks to demonstrate how film has responded to US intervention overseas. It is argued that the need to liberate Europe from the evil Other stands forth as the main, heavily moralized purpose of US military intrusion in the film and the mini-series being analyzed. To shore up this speculation, the author considers other films on the topic, namely, The Longest Day (1962) and Shutter Island (2009). The author claims that the scenes in the concentration camps that are crucial in Band of Brothers and Shutter Island have an ethical function, i.e. they justify US intervention in the foreign territory. Additionally, the article provides a brief overview of Playing for Time (1980), Schindler’s List (1993), The Devil’s Arithmetic (1999), The Grey Zone (2001), as well as the mini-series Holocaust (1978).  相似文献   

13.
In a rendez‐vous search two or more teams called seekers try to minimize the time needed to find each other. In this paper, we consider s seekers in a rectangular lattice of locations where each knows the configuration of the lattice, the distribution of the seekers at time 0, and its own location, but not the location of any other. We measure time discretely, in turns. A meeting takes place when the two seekers reach the same point or adjacent points. The main result is that for any dimension of lattice, any initial distribution of seekers there are optimal strategies for the seekers that converge (in a way we shall make clear) to a center. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

14.
In the Swapping Problem (SP), we are given a complete graph, a set of object types, and a vehicle of unit capacity. An initial state specifies the object type currently located at each vertex (at most one type per vertex). A final state describes where these object types must be repositioned. In general, there exist several identical objects for a given object type, yielding multiple possible destinations for each object. The SP consists of finding a shortest vehicle route starting and ending at an arbitrary vertex, in such a way that each object is repositioned in its final state. This article exhibits some structural properties of optimal solutions and proposes a branch‐and‐cut algorithm based on a 0‐1 formulation of the problem. Computational results on random instances containing up to 200 vertices and eight object types are reported. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

15.
This article studies a min‐max path cover problem, which is to determine a set of paths for k capacitated vehicles to service all the customers in a given weighted graph so that the largest path cost is minimized. The problem has wide applications in vehicle routing, especially when the minimization of the latest service completion time is a critical performance measure. We have analyzed four typical variants of this problem, where the vehicles have either unlimited or limited capacities, and they start from either a given depot or any depot of a given depot set. We have developed approximation algorithms for these four variants, which achieve approximation ratios of max{3 ‐ 2/k,2}, 5, max{5 ‐ 2/k,4}, and 7, respectively. We have also analyzed the approximation hardness of these variants by showing that, unless P = NP , it is impossible for them to achieve approximation ratios less than 4/3, 3/2, 3/2, and 2, respectively. We have further extended the techniques and results developed for this problem to other min‐max vehicle routing problems.© 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

16.
This article deals with special cases of open-shop scheduling where n jobs have to be processed by m, m ?3, machines to minimize the schedule length. The main result obtained is an O(n) algorithm for the three-machine problem with a dominated machine.  相似文献   

17.
We consider a class of network flow problems with pure quadratic costs and demonstrate that the conjugate gradient technique is highly effective for large-scale versions. It is shown that finding a saddle point for the Lagrangian of an m constraint, n variable network problem requires only the solution of an unconstrained quadratic programming problem with only m variables. It is demonstrated that the number of iterations for the conjugate gradient algorithm is substantially smaller than the number of variables or constraints in the (primal) network problem. Forty quadratic minimum-cost flow problems of various sizes up to 100 nodes are solved. Solution time for the largest problems (4,950 variables and 99 linear constraints) averaged 4 seconds on the CBC Cyber 70 Model 72 computer.  相似文献   

18.
One way of achieving the increased levels of system reliability and availability demanded by critical computer-based control systems is through the use of fault-tolerant distributed computer systems. This article addresses the problem of allocating a set of m tasks among a set of n processors in a manner that will satisfy various task assignment, system capacity, and task scheduling constraints while balancing the workload across processors. We discuss problem background, problem formulation, and a known heuristic procedure for the problem. A new solution-improving heuristic procedure is introduced, and computational experience with the heuristics is presented. With only a modest increase in the amount of computational effort, the new procedure is demonstrated to improve dramatically solution quality as well as obtain near-optimal solutions to the test problems.  相似文献   

19.
Both topics of batch scheduling and of scheduling deteriorating jobs have been very popular among researchers in the last two decades. In this article, we study a model combining these two topics. We consider a classical batch scheduling model with unit‐jobs and batch‐independent setup times, and a model of step‐deterioration of processing times. The objective function is minimum flowtime. The optimal solution of the relaxed version (allowing non‐integer batch sizes) is shown to have a unique structure consisting of two consecutive decreasing arithmetic sequences of batch sizes. We also introduce a simple and efficient rounding procedure that guarantees integer batch sizes. The entire solution procedure requires an effort of O(n) (where nis the number of jobs.) © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

20.
We consider an M/G/1 retrial queue with finite capacity of the retrial group. First, we obtain equations governing the dynamic of the waiting time. Then, we focus on the numerical inversion of the density function and the computation of moments. These results are used to approximate the waiting time of the M/G/1 queue with infinite retrial group for which direct analysis seems intractable. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号