首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
针对机动目标跟踪中常见的量测转换问题,提出了一种基于球坐标系下最优线性无偏估计滤波的交互多模型算法。该算法的核心思想是将最优线性无偏估计滤波作为交互多模型中的基本滤波,完成对机动目标的跟踪。在仿真试验中,将该算法与基于扩展卡尔曼滤波的交互多模型算法进行比较,结果表明该算法有效地抑制了扩展卡尔曼滤波中常见的滤波发散问题,并且提高了跟踪的精度,具有较好的实用性。  相似文献   

2.
本文提出一种跟踪机动目标的改进方法。通过组合输入估计方法和可变维滤波方法的递归公式,构成所提出的跟踪滤波器。在所提出的方法中,当探测到目标机动时,滤波器还提供目标开始机动瞬时的估计。用这种估计的机动开始时间,也估计机动输入并且跟踪系统变成了机动模型。所提出过程的计算负载与输入估计方法的计算负载不相上下。为了说明所提出跟踪滤波器的效果,进行了仿真,把输入估计滤波器和可变维滤波器与交互式多模型(IMM)滤波器进行了比较。  相似文献   

3.
在目标跟踪过程中,每个量测周期所得到的雷达量测数据以极坐标形式表示。量测方程在极坐标中是线性的,但在笛卡儿坐标系中却是非线性的。此时,目标跟踪实际上是非线性的。随着现代航空、航天技术的发展,飞行器的机动性得到了更大的加强,这就使跟踪问题变得更加困难和复杂。针对非线性机动目标跟踪问题,提出了一种扩展式当前统计模型机动目标跟踪算法。该算法不需要假定目标的机动加速度模型,而是直接正确地估计出机动目标的当前状态,不存在任何估计滞后与修正问题。最后,给出了算法的仿真分析。  相似文献   

4.
基于多项式模型的各种自适应滤波算法被广泛应用于机动目标跟踪领域,但尚没有统一的评估标准来衡量这些跟踪算法的优劣。由于存在确定的时变未知输入,机动目标的状态估计实际为有偏估计。基于状态估计均方误差最小的准则,推导了多项式模型滤波的最小均方误差界计算方法,获得了使状态估计均方误差最小的过程噪声方差变化规律。该方法给出了各种基于多项式模型的机动目标跟踪算法的估计均方误差下限,也为机动目标跟踪中最优过程噪声方差的设定提供了依据。仿真结果验证了算法的有效性。  相似文献   

5.
一种攻击机动目标的变结构导引律研究   总被引:3,自引:0,他引:3  
无人机在快速接敌的过程中,传统比例导引法系数的最优解与目标和载机的距离有关,而且一旦目标机动或增加了干扰,跟踪效果都会变差.为了解决这一问题,提出了一种变结构的跟踪方法.仿真结果表明:该方法在未知目标距离的情况下能够快速接敌,且能减小无人机所需过载,提高制导精度和跟踪鲁棒性,限制了视线角速度.  相似文献   

6.
机动目标跟踪算法   总被引:3,自引:0,他引:3  
文中提出了一种新的机动目标跟踪方法。一种基于新息序列的最快检测方案被设计出来,用于目标机动的快速检测。对给定的虚警概率,得出了最小机动检测延迟的最佳滑动窗口长度。检测到机动后,用增加机动项的方法修正系统模型。文中提出用递推算法来估计机动幅度。使用该估计,修正的卡尔曼(Kalman)滤波器可被用来对目标实施跟踪。仿真结果表明尤其是在目标机动过程中该算法具有优越的性能。  相似文献   

7.
反舰导弹具有飞行速度高、进入目标高度低和机动性强等特点,对反舰导弹跟踪滤波属于典型的非线性系统估计问题,对算法要求较高。粒子滤波器可以获得近似最优解,采用粒子滤波代替交互多模型跟踪算法中的扩展卡尔曼滤波,将粒子滤波与交互多模型的优点相结合,用于非线性非系统的高速高机动反舰导弹目标跟踪,比较扩展卡尔曼滤波而言,这种滤波器对不确定情况有更好的滤波性能。将这种滤波器应用到跟踪算法中,可以对非线性系统取得良好的滤波效果。Monte Carlo仿真结果表明在反舰导弹各种机动情况下跟踪滤波算法是有效的。  相似文献   

8.
研究了反弹道导弹中机动目标的拦截问题,提出了一种基于机动频率自适应的UKF滤波估计算法,将实时估计得到的机动频率应用于目标运动状态的滤波过程中,从而对目标运动信息进行快速而有效的估计。仿真结果表明,这种自适应估计算法,较固定机动频率的滤波算法,有较快的目标估计速度,较高的目标估计精度,能有效的跟踪和应对目标机动加速度的快速变化,有效避免了由于不能及时跟踪的目标运动信息而导致较大脱靶量的现象。  相似文献   

9.
机动目标的跟踪在实际中有着广泛的应用,其核心问题是机动建模和滤波算法。采用当前统计模型和容积卡尔曼滤波对机动目标进行跟踪。针对容积卡尔曼滤波在目标突发机动时跟踪性能较差的问题,借鉴强跟踪滤波思想,将渐消因子引入滤波过程,提出了一种改进的强跟踪容积卡尔曼滤波算法,该算法实现简单,估计精度高,鲁棒性强。仿真结果表明,该算法有效增强了系统对目标突发机动的自适应跟踪能力,并保持了对弱机动和非机动目标良好的跟踪性能,且运算速度较快。  相似文献   

10.
机动目标的跟踪在实际中有着广泛的应用,其核心问题是机动建模和滤波算法。采用当前统计模型和容积卡尔曼滤波对机动目标进行跟踪。针对容积卡尔曼滤波在目标突发机动时跟踪性能较差的问题,借鉴强跟踪滤波思想,将渐消因子引入滤波过程,提出了一种改进的强跟踪容积卡尔曼滤波算法,该算法实现简单,估计精度高,鲁棒性强。仿真结果表明,该算法有效增强了系统对目标突发机动的自适应跟踪能力,并保持了对弱机动和非机动目标良好的跟踪性能,且运算速度较快。  相似文献   

11.
为了提高作战飞机的隐蔽性,提出了一种基于协方差的机载多传感器管理与辐射控制方法,给出了一种基于扩展卡尔曼滤波和交互多模型的雷达、红外序贯滤波的机载多传感器协同跟踪方法。对利用该方法的机载多传感器目标跟踪性能进行了仿真分析,仿真结果证明了该方法的合理性和有效性。  相似文献   

12.
为克服扩展卡尔曼滤波算法的缺陷,将UKF算法应用于纯方位目标跟踪问题中.该算法是一种以扩展卡尔曼滤波算法为基本框架,以贝叶斯理论和UT变换为理论基础的新型滤波算法.对UKF算法进行了深入的研究,并给出了一个纯方位目标跟踪的算例.仿真结果表明,该算法提高了滤波的稳定性和精确性,优于一般的扩展卡尔曼滤波算法,具有广泛的应用前景.  相似文献   

13.
静止观测站下机动目标的推广卡尔曼角度跟踪算法   总被引:1,自引:1,他引:0  
采用"当前"统计模型,提出了静止观测站下机动目标的推广卡尔曼角度跟踪算法,实现了对目标的角度跟踪和预测,并对此算法进行了Monte-Carlo计算机仿真.通过分析目标角度的误差均值与误差均方值,表明此算法有较好的角度跟踪与预测能力.  相似文献   

14.
主要对弹道目标的跟踪滤波方法进行了综述,对扩展卡尔曼滤波(extended Kalman filter,EKF)、转换测量卡尔曼滤波(conversion measurement Kalman filter,CMKF)、基于弹道运动方程的扩展卡尔曼滤波(ballistic extended Kalman filter,...  相似文献   

15.
去偏转换坐标卡尔曼滤波器的雷达目标跟踪   总被引:1,自引:1,他引:0       下载免费PDF全文
在雷达目标跟踪中 ,扩展卡尔曼滤波 (EKF)和转换坐标卡尔曼滤波 (CMKF)得到了广泛的应用。但当目标方位角的测量误差与目标斜距的乘积较大时 ,传统的EKF和CMKF的滤波性能会大大降低。推导了有测速元时的去偏转换卡尔曼滤波 (DCMKF)算法 ,仿真结果表明DCMKF的精度比EKF与CMKF有了很大的提高  相似文献   

16.
一种单站纯方位目标跟踪中的线性近似化滤波算法   总被引:6,自引:2,他引:4  
针对EKF算法中存在初始化困难的缺陷,利用近似线性化的方法,构建基于修正极坐标系下的近似线性最小二乘滤波算法ALF;以ALF作为EKF滤波器的初始化算法,实现联合ALF和EKF的两阶段滤波算法,并将它应用在水下单站纯方位目标跟踪中。仿真结果表明,由ALF和EKF组成的两阶段滤波算法具有很好的稳定性,算法精度较高,是一种有效的算法,对潜艇实施隐蔽探测与跟踪具有重要意义.  相似文献   

17.
针对潜艇纯方位目标跟踪算法存在算法初始化困难、收敛速度慢、稳定性差等问题,借鉴交互式多模型算法(IMM)的思想,将EKF实时解算出的滤波增益和满意滤波解算出的稳态增益实时融合并行工作,以求克服滤波初值对滤波器的影响,尽可能地消除线性化误差,最终输出具有更高精度的估计结果。仿真实验表明,提出的单站纯方位算法对滤波初值的设置有较大的领域范围,较好地克服了算法对滤波初值的敏感性问题,同时增加了算法的稳定性。  相似文献   

18.
纯方位TMA的变增益扩展卡尔曼滤波算法   总被引:1,自引:0,他引:1  
通过对水下纯方位目标运动分析中的扩展卡尔曼滤波(EKF)算法的分析,利用方位新息,构成了一条反馈回路,从而将EKF算法改进为变增益扩展卡尔曼滤波(VGEKF)算法.对比仿真分析表明,VGEKF较之EKF滤波效果有所改善,增强了稳定性,提高了精度,为水下纯方位目标运动分析的实现提供新的途径.  相似文献   

19.
一种纯方位跟踪中的自适应滤波算法   总被引:1,自引:0,他引:1  
针对纯方位被动目标跟踪中扩展卡尔曼滤波算法易发散的不足,提出了一种自适应的改进算法。该算法利用极大后验噪声估计器Sage-Husa对虚拟观测噪声进行实时在线估计,动态补偿线性化带来的误差。算法的对比仿真分析结果表明,AEKF较之EKF滤波效果有所改善,增强了稳定性,提高了精度,为水下纯方位被动目标跟踪的实现提供一种新的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号