首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Let us assume that observations are obtained at random and sequentially from a population with density function In this paper we consider a sequential rule for estimating μ when σ is unknown corresponding to the following class of cost functions In this paper we consider a sequential rule for estimating μ when σ is unknown corresponding to the following class of cost functions Where δ(XI,…,XN) is a suitable estimator of μ based on the random sample (X1,…, XN), N is a stopping variable, and A and p are given constants. To study the performance of the rule it is compared with corresponding “optimum fixed sample procedures” with known σ by comparing expected sample sizes and expected costs. It is shown that the rule is “asymptotically efficient” when absolute loss (p=-1) is used whereas the one based on squared error (p = 2) is not. A table is provided to show that in small samples similar conclusions are also true.  相似文献   

2.
Let X1 < X2 <… < Xn denote an ordered sample of size n from a Weibull population with cdf F(x) = 1 - exp (?xp), x > 0. Formulae for computing Cov (Xi, Xj) are well known, but they are difficult to use in practice. A simple approximation to Cov(Xi, Xj) is presented here, and its accuracy is discussed.  相似文献   

3.
Let (Y, Xl,…, XK) be a random vector distributed according to a multivariate normal distribution where Xl,…, XK are considered as predictor variables and y is the predictand. Let ri, and Ri denote the population and sample correlation coefficients, respectively, between Y and Xi. The population correlation coefficient ri is a measure of the predictive power of Xi. The author has derived the joint distribution of Rl,…, RK and its asymptotic property. The given result is useful in the problem of selecting the most important predictor variable corresponding to the largest absolute value of ri.  相似文献   

4.
For each n., X1(n), X2(n), …, Xn(n) are IID, with common pdf fn(x). y1(n) < … < Yn (n) are the ordered values of X1 (n), …, Xn(n). Kn is a positive integer, with lim Kn = ∞. Under certain conditions on Kn and fn (x), it was shown in an earlier paper that the joint distribution of a special set of Kn + 1 of the variables Y1 (n), …, Yn (n) can be assumed to be normal for all asymptotic probability calculations. In another paper, it was shown that if fn (x) approaches the pdf which is uniform over (0, 1) at a certain rate as n increases, then the conditional distribution of the order statistics not in the special set can be assumed to be uniform for all asymptotic probability calculations. The present paper shows that even if fn (x) does not approach the uniform distribution as n increases, the distribution of the order statistics contained between order statistics in the special set can be assumed to be the distribution of a quadratic function of uniform random variables, for all asymptotic probability calculations. Applications to statistical inference are given.  相似文献   

5.
This paper is concerned with estimating p = P(X1 < Y …, Xn < Y) or q =P (X < Y1, …, X < Yn) where the X's and Y's are all independent random variables. Applications to estimation of the reliability p from stress-strength relationships are considered where a component is subject to several stresses X1, X2, …, XN whereas its strength, Y, is a single random variable. Similarly, the reliability q is of interest where a component is made of several parts all with their individual strengths Y1, Y2 …, YN and a single stress X is applied to the component. When the X's and Y's are independent and normal, maximum likelihood estimates of p and q have been obtained. For the case N = 2 and in some special cases, minimum variance unbiased estimates have been given. When the Y's are all exponential and the X is normal with known variance, but unknown mean (or uniform between 0 and θ, θ being unknown) the minimum variance unbiased estimate of q is established in this paper.  相似文献   

6.
Consider an auction in which increasing bids are made in sequence on an object whose value θ is known to each bidder. Suppose n bids are received, and the distribution of each bid is conditionally uniform. More specifically, suppose the first bid X1 is uniformly distributed on [0, θ], and the ith bid is uniformly distributed on [Xi?1, θ] for i = 2, …?, n. A scenario in which this auction model is appropriate is described. We assume that the value θ is un known to the statistician and must be esimated from the sample X1, X2, …?, Xn. The best linear unbiased estimate of θ is derived. The invariance of the estimation problem under scale transformations in noted, and the best invariant estimation problem under scale transformations is noted, and the best invariant estimate of θ under loss L(θ, a) = [(a/θ) ? 1]2 is derived. It is shown that this best invariant estimate has uniformly smaller mean-squared error than the best linear unbiased estimate, and the ratio of the mean-squared errors is estimated from simulation experiments. A Bayesian formulation of the estimation problem is also considered, and a class of Bayes estimates is explicitly derived.  相似文献   

7.
For each n, X1(n),…, Xn(n) are independent and identically distributed random variables, each with cumulative distribution function F(x) which is known to be absolutely continuous but is otherwise unknown. The problem is to test the hypothesis that \documentclass{article}\pagestyle{empty}\begin{document}$ F(x) = G\left( {{\textstyle{{x - \theta _1 } \over {\theta _2 }}}} \right) $\end{document}, where the cumulative distribution function Gx is completely specified and satisfies certain regularity conditions, and the parameters θ1, θ2 are unknown and unspecified, except that the scale parameter θ2, is positive. Y1 (n) ≦ Y2 (n) ≦ … ≦ Yn (n)are the ordered values of X1(n),…, Xn(n). A test based on a certain subset of {Yi(n)} is proposed, is shown to have asymptotically a normal distribution when the hypothesis is true, and is shown to be consistent against all alternatives satisfying a mild regularity condition.  相似文献   

8.
Suppose that observations from populations π1, …, πk (k ≥ 1) are normally distributed with unknown means μ1., μk, respectively, and a common known variance σ2. Let μ[1] μ … ≤ μ[k] denote the ranked means. We take n independent observations from each population, denote the sample mean of the n observation from π1 by X i (i = 1, …, k), and define the ranked sample means X [1] ≤ … ≤ X [k]. The problem of confidence interval estimation of μ(1), …,μ[k] is stated and related to previous work (Section 1). The following results are obtained (Section 2). For i = 1, …, k and any γ(0 < γ < 1) an upper confidence interval for μ[i] with minimal probability of coverage γ is (? ∞, X [i]+ h) with h = (σ/n1/2) Φ?11/k-i+1), where Φ(·) is the standard normal cdf. A lower confidence interval for μ[i] with minimal probability of coverage γ is (X i[i]g, + ∞) with g = (σ/n1/2) Φ?11/i). For the upper confidence interval on μ[i] the maximal probability of coverage is 1– [1 – γ1/k-i+1]i, while for the lower confidence interval on μ[i] the maximal probability of coverage is 1–[1– γ1/i] k-i+1. Thus the maximal overprotection can always be calculated. The overprotection is tabled for k = 2, 3. These results extend to certain translation parameter families. It is proven that, under a bounded completeness condition, a monotone upper confidence interval h(X 1, …, X k) for μ[i] with probability of coverage γ(0 < γ < 1) for all μ = (μ[1], …,μ[k]), does not exist.  相似文献   

9.
Suppose X1,X2, ?,Xn is a random sample of size n from a continuous distribution function F(x) and let X1,n, ≦ X2,n ≦ ? ≦ Xn,n be the corresponding order statistics. We define the jth-order gap gi,j as gi,j = Xi+j,n ? Xi,n, 1 ≦ i < n, 1 ≦ jn ? i. In this article characterizations of the exponential distribution are given by considering the distributional properties of gk,n-k, 1 ≦ kn.  相似文献   

10.
A statistic is determined for testing the hypothesis of equality for scale parameters from two populations, each of which has the first asymptotic distribution of smallest (extreme) values. The probability distribution is derived for this statistic, and critical values are determined and given in tabular form for a one-sided or two-sided alternative, for censored samples of size n1 and n2, n1 = 2, 3, …. 6, n2 = 2, 3, …. 6. The power function of the test for certain alternatives is also calculated and listed in each case considered.  相似文献   

11.
The discounted return associated with a finite state Markov chain X1, X2… is given by g(X1)+ αg(X2) + α2g(X3) + …, where g(x) represents the immediate return from state x. Knowing the transition matrix of the chain, it is desired to compute the expected discounted return (present worth) given the initial state. This type of problem arises in inventory theory, dynamic programming, and elsewhere. Usually the solution is approximated by solving the system of linear equations characterizing the expected return. These equations can be solved by a variety of well-known methods. This paper describes yet another method, which is a slight modification of the classical iterative scheme. The method gives sequences of upper and lower bounds which converge mono-tonely to the solution. Hence, the method is relatively free of error control problems. Computational experiments were conducted which suggest that for problems with a large number of states, the method is quite efficient. The amount of computation required to obtain the solution increases much slower with an increase in the number of states, N, than with the conventional methods. In fact, computational time is more nearly proportional to N2, than to N3.  相似文献   

12.
An approximation for P(X2 + Y2 ≤ K2σ21) based on an unpublished result of Kleinecke is derived, where X and Y are independent normal variables having zero means and variances σ21 and σ22 and σ1 ≥ σ2. Also, we provide asymptotic expressions for the probabilities for large values of β = K2(1 - c2)/4c2 where c = σ21. These are illustrated by comparing with values tabulated by Harter [6]. Solution of K for specified P and c is also considered. The main point of this note is that simple and easily calculable approximations for P and K can be developed and there is no need for numerical evaluation of integrals.  相似文献   

13.
An alternating renewal process starts at time zero and visits states 1,2,…,r, 1,2, …,r 1,2, …,r, … in sucession. The time spent in state i during any cycle has cumulative distribution function Fi, and the sojourn times in each state are mutually independent, positive and nondegenerate random variables. In the fixed time interval [0,T], let Ui(T) denote the total amount of time spent in state i. In this note, a central limit theorem is proved for the random vector (Ui(T), 1 ≤ ir) (properly normed and centered) as T → ∞.  相似文献   

14.
For each n, X1(n),…Xn(n) are independent and identically distributed random variables, with common probability density function Where c, θ, α, and r(y) are all unknown. It is shown that we can make asymptotic inferences about c, θ, and α, when r(y) satisfies mild conditions.  相似文献   

15.
Let Xt, t = 1,2, ?, be a stationary Gaussian Markov process with E(Xt) = μ and Cov(Xt, Xt+k) = σ2ρk. We derive a prediction interval for X2n+1 based on the preceding 2n observations X1,X2, ?,X2n.  相似文献   

16.
This study is concerned with a game model involving repeated play of a matrix game with unknown entries; it is a two-person, zero-sum, infinite game of perfect recall. The entries of the matrix ((pij)) are selected according to a joint probability distribution known by both players and this unknown matrix is played repeatedly. If the pure strategy pair (i, j) is employed on day k, k = 1, 2, …, the maximizing player receives a discounted income of βk - 1 Xij, where β is a constant, 0 ≤ β ? 1, and Xij assumes the value one with probability pij or the value zero with probability 1 - pij. After each trial, the players are informed of the triple (i, j, Xij) and retain this knowledge. The payoff to the maximizing player is the expected total discounted income. It is shown that a solution exists, the value being characterized as the unique solution of a functional equation and optimal strategies consisting of locally optimal play in an auxiliary matrix determined by the past history. A definition of an ?-learning strategy pair is formulated and a theorem obtained exhibiting ?-optimal strategies which are ?-learning. The asymptotic behavior of the value is obtained as the discount tends to one.  相似文献   

17.
We present a branch and bound algorithm to solve mathematical programming problems of the form: Find x =|(x1,…xn) to minimize Σ?i0(x1) subject to x?G, l≦x≦L and Σ?i0(x1)≦0, j=1,…,m. With l=(l1,…,ln) and L=(L1,…,Ln), each ?ij is assumed to be lower aemicontinuous and piecewise convex on the finite interval [li.Li]. G is assumed to be a closed convex set. The algorithm solves a finite sequence of convex programming problems; these correspond to successive partitions of the set C={x|l ≦ x ≦L} on the bahis of the piecewise convexity of the problem functions ?ij. Computational considerations are discussed, and an illustrative example is presented.  相似文献   

18.
Consider n jobs (J1, …, Jn), m working stations (M1, …, Mm) and λ linear resources (R1, …, Rλ). Job Ji consists of m operations (Oi1, …, Oim). Operation Oij requires Pk(i, j) units of resource Rk to be realized in an Mj. The availability of resource Rk and the ability of the working station Mh to consume resource Rk, vary over time. An operation involving more than one resource consumes them in constant proportions equal to those in which they are required. The order in which operations are realized is immaterial. We seek an allocation of the resources such that the schedule length is minimized. In this paper, polynomial algorithms are developed for several problems, while NP-hardness is demonstrated for several others. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 51–66, 1998  相似文献   

19.
T identical exponential lifetime components out of which G are initially functioning (and B are not) are to be allocated to N subsystems, which are connected either in parallel or in series. Subsystem i, i = 1,…, N, functions when at least Ki of its components function and the whole system is maintained by a single repairman. Component repair times are identical independent exponentials and repaired components are as good as new. The problem of the determination of the assembly plan that will maximize the system reliability at any (arbitrary) time instant t is solved when the component failure rate is sufficiently small. For the parallel configuration, the optimal assembly plan allocates as many components as possible to the subsystem with the smallest Ki and allocates functioning components to subsystems in increasing order of the Ki's. For the series configuration, the optimal assembly plan allocates both the surplus and the functioning components equally to all subsystems whenever possible, and when not possible it favors subsystems in decreasing order of the Ki's. The solution is interpreted in the context of the optimal allocation of processors and an initial number of jobs in a problem of routing time consuming jobs to parallel multiprocessor queues. © John Wiley & Sons, Inc. Naval Research Logistics 48: 732–746, 2001  相似文献   

20.
In multi-commodity inventory systems with variable setup costs, the mixed ordering policy assumes that commodities may be ordered either individually, or may be arbitrarily grouped for joint ordering. Thus, for a two-commodity system, commodity one or commodity two or commodities one and two may be ordered incurring respectively fixed order costs of K, K1, or K2, where max (K1, K2) ≤ K ≤ K1 + K2, This paper considers a two-commodity periodic review system. The stationary characteristics of the system are analyzed, and, for a special case, explicit solutions are obtained for the distribution of the stock levels at the beginning of the periods. In a numerical example, optimal policy variables are computed, and the mixed ordering policy is compared with individual and joint ordering policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号