首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A production system which generates income is subject to random failure. Upon failure, the system is replaced by a new identical one and the replacement cycles are repeated indefinitely. In our breakdown model, shocks occur to the system in a Poisson stream. Each shock causes a random amount of damage, and these damages accumulate additively. The failure time depends on the accumulated damage in the system. The income from the system and the cost associated with a planned replacement depend on the accumulated damage in the system. An additional cost is incurred at each failure in service. We allow a controller to replace the system at any stopping time T before failure time. We will consider the problem of specifying a replacement rule that is optimal under the following criteria: maximum total long-run average net income per unit time, and maximum total long-run expected discounted net income. Our primary goal is to introduce conditions under which an optimal policy is a control limit policy and to investigate how the optimal policy can be obtained. Examples will be presented to illustrate computational procedures.  相似文献   

2.
In this article, an optimal replacement policy for a cold standby repairable system consisting of two dissimilar components with repair priority is studied. Assume that both Components 1 and 2, after repair, are not as good as new, and the main component (Component 1) has repair priority. Both the sequence of working times and that of the components'repair times are generated by geometric processes. We consider a bivariate replacement policy (T,N) in which the system is replaced when either cumulative working time of Component 1 reaches T, or the number of failures of Component 1 reaches N, whichever occurs first. The problem is to determine the optimal replacement policy (T,N)* such that the long run average loss per unit time (or simply the average loss rate) of the system is minimized. An explicit expression of this rate is derived, and then optimal policy (T,N)* can be numerically determined through a two‐dimensional‐search procedure. A numerical example is given to illustrate the model's applicability and procedure, and to illustrate some properties of the optimal solution. We also show that if replacements are made solely on the basis of the number of failures N, or solely on the basis of the cumulative working time T, the former class of policies performs better than the latter, albeit only under some mild conditions. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

3.
The notion of signature has been widely applied for the reliability evaluation of technical systems that consist of binary components. Multi‐state system modeling is also widely used for representing real life engineering systems whose components can have different performance levels. In this article, the concept of survival signature is generalized to a certain class of unrepairable homogeneous multi‐state systems with multi‐state components. With such a generalization, a representation for the survival function of the time spent by a system in a specific state or above is obtained. The findings of the article are illustrated for multi‐state consecutive‐k‐out‐of‐n system which perform its task at three different performance levels. The generalization of the concept of survival signature to a multi‐state system with multiple types of components is also presented. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 593–599, 2017  相似文献   

4.
This paper proposes a new model that generalizes the linear consecutive k‐out‐of‐r‐from‐n:F system to multistate case with multiple failure criteria. In this model (named linear multistate multiple sliding window system) the system consists of n linearly ordered multistate elements (MEs). Each ME can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. Several functions are defined for a set of integer numbers ρ in such a way that for each r ∈ ρ corresponding function fr produces negative values if the combination of performance rates of r consecutive MEs corresponds to the unacceptable state of the system. The system fails if at least one of functions fr for any r consecutive MEs for r ∈ ρ produces a negative value. An algorithm for system reliability evaluation is suggested which is based on an extended universal moment generating function. Examples of system reliability evaluation are presented. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

5.
This article defines optimal replacement policies for identical components performing different functions in a given system, when more than one spare part is available. The problem is first formulated for two components and any number of spare parts and the optimal replacement time y(x) at time x is found to have a certain form. Sufficient conditions are then provided for y(x) to be a constant y* for x > y*, and y(x) = x for x > y* (single-critical-number policy). Under the assumption that the optimal policies are of the single-critical-number type, the results are extended to the n-component case, and a theorem is provided that reduces the required number of critical numbers. Finally, the theory is applied to the case of the exponential and uniform failure laws, in which single-critical-number policies are optimal, and to another failure law in which they are not.  相似文献   

6.
The authors study a discrete-time, infinite-horizon, dynamic programming model for the replacement of components in a binary k-out-of-n failure system. (The system fails when k or more of its n components fail.) Costs are incurred when the system fails and when failed components are replaced. The objective is to minimize the long-run expected average undiscounted cost per period. A companion article develops a branch-and-bound algorithm for computing optimal policies. Extensive computational experiments find it effective for k to be small or near n; however, difficulties are encountered when n ≥ 30 and 10 ≤ kn − 4. This article presents a simple, intuitive heuristic rule for determining a replacement policy whose memory storage and computation time requirements are O(n − k) and O(n(n − k) + k), respectively. This heuristic is based on a plausible formula for ranking components in order of their usefulness. The authors provide sufficient conditions for it to be optimal and undertake computational experiments that suggest that it handles parallel systems (k = n) effectively and, further, that its effectiveness increases as k moves away from n. In our test problems, the mean relative errors are under 5% when n ≤ 100 and under 2% when kn − 3 and n ≤ 50. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44, 273–286, 1997.  相似文献   

7.
We consider the integrated problem of optimally maintaining an imperfect, deteriorating sensor and the safety‐critical system it monitors. The sensor's costless observations of the binary state of the system become less informative over time. A costly full inspection may be conducted to perfectly discern the state of the system, after which the system is replaced if it is in the out‐of‐control state. In addition, a full inspection provides the opportunity to replace the sensor. We formulate the problem of adaptively scheduling full inspections and sensor replacements using a partially observable Markov decision process (POMDP) model. The objective is to minimize the total expected discounted costs associated with system operation, full inspection, system replacement, and sensor replacement. We show that the optimal policy has a threshold structure and demonstrate the value of coordinating system and sensor maintenance via numerical examples. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 399–417, 2017  相似文献   

8.
This paper considers the maintenance of aircraft engine components where economies exist for joint replacement because (a) the aircraft must be pulled from service for maintenance and (b) repair of some components requires removal and disassembly of the engine. It is well known that the joint replacement problem is difficult to solve exactly, because the optimal solution does not have a simple structured form. Therefore, we formulate three easy-to-implement heuristics and test their performance against a lower bound for various numerical examples. One of our heuristics, the base interval approach, in which replacement cycles for all components are restricted to be multiples of a specified interval, is shown to be robustly accurate. Moreover, this heuristic is consistent with maintenance policies used by commercial airlines in which periodic maintenance checks are made at regular intervals. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 435–458, 1998  相似文献   

9.
This paper examines various models for maintenance of a machine operating subject to stochastic deterioration. Three alternative models are presented for the deterioration process. For each model, in addition to the replacement decision, the option exists of performing preventive maintenance. The effect of this maintenance is to “slow” the deterioration process. With an appropriate reward structure imposed on the processes, the models are formulated as continuous time Markov decision processes. the optimality criterion being the maximization of expected discounted reward earned over an infinite time horizon. For each model conditions are presented under which the optimal maintenance policy exhibits the following monotonic structure. First, there exists a control limit rule for replacement. That is, there exists a number i* such that if the state of machine deterioration exceeds i* the optimal policy replaces the machine by a new machine. Secondly, prior to replacement the optimal level of preventive maintenance is a nonincreasing function of the state of machine deterioration. The conditions which guarantee this result have a cost/benefit interpretation.  相似文献   

10.
A set of n spare components whose life lengths are exponentially distributed with rates μ1, …,μn are available to keep a two-component parallel system in operation. We derive the optimal order of replacement of failed components in order to maximize the system life length.  相似文献   

11.
We consider the costly surveillance of a stochastic system with a finite state space and a finite number of actions in each state. There is a positive cost of observing the system and the system earns at a rate depending on the state of the system and the action taken. A policy for controlling such a system specifies the action to be taken and the time to the next observation, both possibly random and depending on the past history of the system. A form of the long range average income is the criterion for comparing different policies. If R Δ denotes the class of policies for which the times between successive observations of the system are random variables with cumulative distribution functions on [0, Δ], Δ < ∞, we show that there exists a nonrandomized stationary policy that is optimal in R Δ. Furthermore, for sufficiently large Δ, this optimal policy is independent of Δ.  相似文献   

12.
Inventory systems with returns are systems in which there are units returned in a repairable state, as well as demands for units in a serviceable state, where the return and demand processes are independent. We begin by examining the control of a single item at a single location in which the stationary return rate is less than the stationary demand rate. This necessitates an occasional procurement of units from an outside source. We present a cost model of this system, which we assume is managed under a continuous review procurement policy, and develop a solution method for finding the policy parameter values. The key to the analysis is the use of a normally distributed random variable to approximate the steady-state distribution of net inventory. Next, we study a single item, two echelon system in which a warehouse (the upper echelon) supports N(N ? 1) retailers (the lower echelon). In this case, customers return units in a repairable state as well as demand units in a serviceable state at the retailer level only. We assume the constant system return rate is less than the constant system demand rate so that a procurement is required at certain times from an outside supplier. We develop a cost model of this two echelon system assuming that each location follows a continuous review procurement policy. We also present an algorithm for finding the policy parameter values at each location that is based on the method used to solve the single location problem.  相似文献   

13.
An R out of N repairable system consisting of N components and operates if at least R components are functioning. Repairable means that failed components are repaired, and upon repair completion they are as good as new. We derive formulas for the expected up‐time, expected down‐time, and the availability of the system, using Markov renewal processes. We assume that either the repair times of the components are generally distributed and the components' lifetimes are exponential or vice versa. The analysis is done for systems with either cold or warm stand‐by. Numerical examples are given for several life time and repair time distributions. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 483–498, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10025  相似文献   

14.
The output of the queueing system M/M/1 is well known to be Poisson. This has also been shown to be true for other more general models inclusive of M/Mn/1; the system in which arrivals and epochs of service completion are elements of a birth and death process with parameters Λ and nμ, respectively, when the system contains n ≥ 1 customers. We shall here show that this result is not true in MnM/1; a system where arrival parameter is state dependent quantity Λ/n+1. Expressions will be given for the steady state joint density of two consecutive output intervals as well as the coefficient of correlation between them.  相似文献   

15.
A system reliability is often evaluated by individual tests of components that constitute the system. These component test plans have advantages over complete system based tests in terms of time and cost. In this paper, we consider the series system with n components, where the lifetime of the i‐th component follows exponential distribution with parameter λi. Assuming test costs for the components are different, we develop an efficient algorithm to design a two‐stage component test plan that satisfies the usual probability requirements on the system reliability and in addition minimizes the maximum expected cost. For the case of prior information in the form of upper bounds on λi's, we use the genetic algorithm to solve the associated optimization problems which are otherwise difficult to solve using mathematical programming techniques. The two‐stage component test plans are cost effective compared to single‐stage plans developed by Rajgopal and Mazumdar. We demonstrate through several numerical examples that our approach has the potential to reduce the overall testing costs significantly. © 2002 John Wiley & Sons, Inc. Naval Research Logistics, 49: 95–116, 2002; DOI 10.1002/nav.1051  相似文献   

16.
A machine or production system is subject to random failure. Upon failure the system is replaced by a new one, and the process repeats. A cost is associated with each replacement, and an additional cost is incurred at each failure in service. Thus, there is an incentive for a controller to attempt to replace before failure occurs. The problem is to find an optimal control strategy that balances the cost of replacement with the cost of failure and results in a minimum total long-run average cost per unit time. We attack this problem under the cumulative damage model for system failure. In this failure model, shocks occur to the system in accordance with a Poisson process. Each shock causes a random amount of damage or wear and these damages accumulate additively. At any given shock, the system fails with a known probability that depends on the total damage accumulated to date. We assume that the cumulative damage is observable by the controller and that his decisions may be based on its current value. Supposing that the shock failure probability is an increasing function of the cumulative damage, we show that an optimal policy is to replace either upon failure or when this damage first exceeds a critical control level, and we give an equation which implicitly defines the optimal control level in terms of the cost and other system parameters. Also treated are some more general models that allow for income lost during repair time and other extensions.  相似文献   

17.
Most maintenance and replacement models for industrial equipment have been developed for independent single-component machines. Most equipment, however, consists of multiple components. Also, when the maintenance crew services several machines, the maintenance policy for each machine is not independent of the states of the other machines. In this paper, two dynamic programming replacement models are presented. The first is used to determine the optimal replacement policy for multi-component equipment. The second is used to determine the optimal replacement policy for a multi-machine system which uses one replacement crew to service several machines. In addition, an approach is suggested for developing an efficient replacement policy for a multi-component, multi-machine system.  相似文献   

18.
Consider a system consisting of n separately maintained independent components where the components alternate between intervals in which they are “up” and in which they are “down”. When the ith component goes up [down] then, independent of the past, it remains up [down] for a random length of time, having distribution Fi[Gi], and then goes down [up]. We say that component i is failed at time t if it has been “down” at all time points s ?[t-A.t]: otherwise it is said to be working. Thus, a component is failed if it is down and has been down for the previous A time units. Assuming that all components initially start “up,” let T denote the first time they are all failed, at which point we say the system is failed. We obtain the moment-generating function of T when n = l, for general F and G, thus generalizing previous results which assumed that at least one of these distributions be exponential. In addition, we present a condition under which T is an NBU (new better than used) random variable. Finally we assume that all the up and down distributions Fi and Gi i = l,….n, are exponential, and we obtain an exact expression for E(T) for general n; in addition we obtain bounds for all higher moments of T by showing that T is NBU.  相似文献   

19.
As a generalization of k‐out‐of‐n:F and consecutive k‐out‐of‐n:F systems, the consecutive k‐within‐m‐out‐of‐n:F system consists of n linearly ordered components such that the system fails iff there are m consecutive components which include among them at least k failed components. In this article, the reliability properties of consecutive k‐within‐m‐out‐of‐n:F systems with exchangeable components are studied. The bounds and approximations for the survival function are provided. A Monte Carlo estimator of system signature is obtained and used to approximate survival function. The results are illustrated and numerics are provided for an exchangeable multivariate Pareto distribution. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

20.
In system reliability analysis, for an n ‐component system, the estimation of the performance of the components in the system is not straightforward in practice, especially when the components are dependent. Here, by assuming the n components in the system to be identically distributed with a common distribution belonging to a scale‐family and the dependence structure between the components being known, we discuss the estimation of the lifetime distributions of the components in the system based on the lifetimes of systems with the same structure. We develop a general framework for inference on the scale parameter of the component lifetime distribution. Specifically, the method of moments estimator (MME) and the maximum likelihood estimator (MLE) are derived for the scale parameter, and the conditions for the existence of the MLE are also discussed. The asymptotic confidence intervals for the scale parameter are also developed based on the MME and the MLE. General simulation procedures for the system lifetime under this model are described. Finally, some examples of two‐ and three‐component systems are presented to illustrate all the inferential procedures developed here. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号