首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Most maintenance and replacement models for industrial equipment have been developed for independent single-component machines. Most equipment, however, consists of multiple components. Also, when the maintenance crew services several machines, the maintenance policy for each machine is not independent of the states of the other machines. In this paper, two dynamic programming replacement models are presented. The first is used to determine the optimal replacement policy for multi-component equipment. The second is used to determine the optimal replacement policy for a multi-machine system which uses one replacement crew to service several machines. In addition, an approach is suggested for developing an efficient replacement policy for a multi-component, multi-machine system.  相似文献   

2.
Machine maintenance is modeled in the setting of a single‐server queue. Machine deterioration corresponds to slower service rates and failure. This leads to higher congestion and an increase in customer holding costs. The decision‐maker decides when to perform maintenance, which may be done pre‐emptively; before catastrophic failures. Similar to classic maintenance control models, the information available to the decision‐maker includes the state of the server. Unlike classic models, the information also includes the number of customers in queue. Considered are both a repair model and a replacement model. In the repair model, with random replacement times, fixed costs are assumed to be constant in the server state. In the replacement model, both constant and variable fixed costs are considered. It is shown in general that the optimal maintenance policies have switching curve structure that is monotone in the server state. However, the switching curve policies for the repair model are not always monotone in the number of customers in the queue. Numerical examples and two heuristics are also presented. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

3.
In this paper, a condition-based maintenance model for a multi-unit production system is proposed and analyzed using Markov renewal theory. The units of the system are subject to gradual deterioration, and the gradual deterioration process of each unit is described by a three-state continuous time homogeneous Markov chain with two working states and a failure state. The production rate of the system is influenced by the deterioration process and the demand is constant. The states of the units are observable through regular inspections and the decision to perform maintenance depends on the number of units in each state. The objective is to obtain the steady-state characteristics and the formula for the long-run average cost for the controlled system. The optimal policy is obtained using a dynamic programming algorithm. The result is validated using a semi-Markov decision process formulation and the policy iteration algorithm. Moreover, an analytical expression is obtained for the calculation of the mean time to initiate maintenance using the first passage time theory.  相似文献   

4.
A single component system is assumed to progress through a finite number of increasingly bad levels of deterioration. The system with level i (0 ≤ i ≤ n) starts in state 0 when new, and is definitely replaced upon reaching the worthless state n. It is assumed that the transition times are directly monitored and the admissible class of strategies allows substitution of a new component only at such transition times. The durations in various deterioration levels are dependent random variables with exponential marginal distributions and a particularly convenient joint distribution. Strategies are chosen to maximize the average rewards per unit time. For some reward functions (with the reward rate depending on the state and the duration in this state) the knowledge of previous state duration provides useful information about the rate of deterioration.  相似文献   

5.
复杂系统复合维修间隔期优化模型   总被引:1,自引:0,他引:1  
采用组合策略对复杂系统辅以功能检测的定期更换维修工作进行综合优化.在分析复杂系统维修费用结构和组成的基础上,建立了其无限使用期条件下单位时间期望费用的数学模型,从而获得系统最佳的功能检测间隔期、定期更换周期内的检测次数和最优总费用.最后通过一个算例验证了该策略和模型的有效性.  相似文献   

6.
We examine the problem of adaptively scheduling perfect observations and preventive replacements for a multi‐state, Markovian deterioration system with silent failures such that total expected discounted cost is minimized. We model this problem as a partially observed Markov decision process and show that the structural properties of the optimal policy hold for certain non‐extreme sample paths. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

7.
针对电容器随机劣化失效的特点,采用半马氏决策过程解决其预防性维修方案设计和维修策略优化问题.在电容器随机劣化的Gaussian-Poisson模型基础上,以检测周期为优化变量,同时考虑预防性维修次数阈值的影响,建立电容器长期运行费用率优化模型.分析表明,对该型号电容器来说,预防性维修相比于事后修理更加有利于节省部件长期运行的费用率.  相似文献   

8.
We study joint preventive maintenance (PM) and production policies for an unreliable production‐inventory system in which maintenance/repair times are non‐negligible and stochastic. A joint policy decides (a) whether or not to perform PM and (b) if PM is not performed, then how much to produce. We consider a discrete‐time system, formulating the problem as a Markov decision process (MDP) model. The focus of the work is on the structural properties of optimal joint policies, given the system state comprised of the system's age and the inventory level. Although our analysis indicates that the structure of optimal joint policies is very complex in general, we are able to characterize several properties regarding PM and production, including optimal production/maintenance actions under backlogging and high inventory levels, and conditions under which the PM portion of the joint policy has a control‐limit structure. In further special cases, such as when PM set‐up costs are negligible compared to PM times, we are able to establish some additional structural properties. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

9.
基于二维量度的复杂设备预防性维修决策优化   总被引:1,自引:0,他引:1  
针对使用与维修具有两个测量维度的复杂设备,开展了其预防性维修决策的优化研究。基于二维量度的故障模式,给出了二维故障率的定量描述方法;分析了其预防性更换过程的基本过程,探讨了二维量度下更换周期对维修效果的影响,并从经济性角度建立了二维工龄更换费用模型;最后,采用算例的形式,对某设备维修决策同时考虑日历使用时间和行驶里程的情况,进行了二维更换间隔期的优化求解,从而验证了所建立方法与模型的实用性。  相似文献   

10.
A system deteriorates due to shocks received at random times, each shock causing a random amount of damage which accumulates over time and may result in a system failure. Replacement of a failed system is mandatory, while an operable one may also be replaced. In addition, the shock process causing system deterioration may be controlled by continuous preventive maintenance expenditures. The joint problem of optimal maintenance and replacement is analyzed and it is shown that, under reasonable conditions, optimal maintenance rate is decreasing in the cumulative damage level and that beyond a certain critical level the system should be replaced. Meaningful bounds are established on the optimal policies and an illustrative example is provided.  相似文献   

11.
This paper finds the optimal integrated production schedule and preventive maintenance plan for a single machine exposed under a cumulative damage process, and investigates how the optimal preventive maintenance plan interacts with the optimal production schedule. The goal is to minimize the total tardiness. The optimal policy possesses the following properties: Under arbitrary maintenance plan when jobs have common processing time, and different due dates, the optimal production schedule is to order the jobs by earliest due date first rule; and when jobs have common due date and different processing times, the optimal production schedule is shortest processing time first. The optimal maintenance plan is of control limit type under any arbitrary production schedule when machine is exposed under a cumulative damage failure process. Numerical studies on the optimal maintenance control limit of the maintenance plan indicate that as the number of jobs to be scheduled increases, the effect of jobs due dates on the optimal maintenance control limit diminishes. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

12.
分析了单部件系统退化过程的特点,建立了基于状态的检查与修理决策模型。该模型根据系统的当前状态来决定检查与修理,通过分析计算系统在一个更新周期内平均检查次数、预防性维修及修复性故障的概率,建立维修费用与检查问隔及预防性维修阈值的关系,以平均维修费用最小为目标,优化检查间隔及预防性维修阈值。最后运用Matlab对模型进行数值计算,结果表明,模型能有效地降低维修费用。  相似文献   

13.
The literature on maintenance models is surveyed. The focus is on work appearing since the 1965 survey, “Maintenance Policies for Stochastically Failing Equipment: A Survey” by John McCall and the 1965 book, The Mathematical Theory of Reliability, by Richard Barlow and Frank Proschan. The survey includes models which involve an optimal decision to procure, inspect, and repair and/or replace a unit subject to deterioration in service.  相似文献   

14.
The parallel machine replacement problem consists of finding a minimum cost replacement policy for a finite population of economically interdependent machines. In this paper, we formulate a stochastic version of the problem and analyze the structure of optimal policies under general classes of replacement cost functions. We prove that for problems with arbitrary cost functions, there can be optimal policies where a machine is replaced only if all machines in worse states are replaced (Worse Cluster Replacement Rule). We then show that, for problems with replacement cost functions exhibiting nonincreasing marginal costs, there are optimal policies such that, in any stage, machines in the same state are either all kept or all replaced (No‐Splitting Rule). We also present an example that shows that economies of scale in replacement costs do not guarantee optimal policies that satisfy the No‐Splitting Rule. These results lead to the fundamental insight that replacement decisions are driven by marginal costs, and not by economies of scale as suggested in the literature. Finally, we describe how the optimal policy structure, i.e., the No‐Splitting and Worse Cluster Replacement Rules, can be used to reduce the computational effort required to obtain optimal replacement policies. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

15.
We consider the integrated problem of optimally maintaining an imperfect, deteriorating sensor and the safety‐critical system it monitors. The sensor's costless observations of the binary state of the system become less informative over time. A costly full inspection may be conducted to perfectly discern the state of the system, after which the system is replaced if it is in the out‐of‐control state. In addition, a full inspection provides the opportunity to replace the sensor. We formulate the problem of adaptively scheduling full inspections and sensor replacements using a partially observable Markov decision process (POMDP) model. The objective is to minimize the total expected discounted costs associated with system operation, full inspection, system replacement, and sensor replacement. We show that the optimal policy has a threshold structure and demonstrate the value of coordinating system and sensor maintenance via numerical examples. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 399–417, 2017  相似文献   

16.
In this article we consider the optimal control of an M[X]/M/s queue, s ≧ 1. In addition to Poisson bulk arrivals we incorporate a reneging function. Subject to control are an admission price p and the service rate μ. Thus, through p, balking response is induced. When i customers are present a cost h(i,μ,p) per unit time is incurred, discounted continuously. Formulated as a continuous time Markov decision process, conditions are given under which the optimal admission price and optimal service rate are each nondecreasing functions of i. In Section 4 we indicate how the infinite state space may be truncated to a finite state space for computational purposes.  相似文献   

17.
This paper studies production planning of manufacturing systems of unreliable machines in tandem. The manufacturing system considered here produces one type of product. The demand is assumed to be a Poisson process and the processing time for one unit of product in each machine is exponentially distributed. A broken machine is subject to a sequence of repairing processes. The up time and the repairing time in each phase are assumed to be exponentially distributed. We study the manufacturing system by considering each machine as an individual system with stochastic supply and demand. The Markov Modulated Poisson Process (MMPP) is applied to model the process of supply. Numerical examples are given to demonstrate the accuracy of the proposed method. We employ (s, S) policy as production control. Fast algorithms are presented to solve the average running costs of the machine system for a given (s, S) policy and hence the approximated optimal (s, S) policy. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 65–78, 2001  相似文献   

18.
We study a stochastic inventory model of a firm that periodically orders a product from a make‐to‐order manufacturer. Orders can be shipped by a combination of two freight modes that differ in lead‐times and costs, although orders are not allowed to cross. Placing an order as well as each use of each freight mode has a fixed and a quantity proportional cost. The decision of how to allocate units between the two freight modes utilizes information about demand during the completion of manufacturing. We derive the optimal freight mode allocation policy, and show that the optimal policy for placing orders is not an (s,S) policy in general. We provide tight bounds for the optimal policy that can be calculated by solving single period problems. Our analysis enables insights into the structure of the optimal policy specifying the conditions under which it simplifies to an (s,S) policy. We characterize the best (s,S) policy for our model, and through extensive numerical investigation show that its performance is comparable with the optimal policy in most cases. Our numerical study also sheds light on the benefits of the dual freight model over the single freight models. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

19.
We consider the problem of optimally maintaining a stochastically degrading, single‐unit system using heterogeneous spares of varying quality. The system's failures are unannounced; therefore, it is inspected periodically to determine its status (functioning or failed). The system continues in operation until it is either preventively or correctively maintained. The available maintenance options include perfect repair, which restores the system to an as‐good‐as‐new condition, and replacement with a randomly selected unit from the supply of heterogeneous spares. The objective is to minimize the total expected discounted maintenance costs over an infinite time horizon. We formulate the problem using a mixed observability Markov decision process (MOMDP) model in which the system's age is observable but its quality must be inferred. We show, under suitable conditions, the monotonicity of the optimal value function in the belief about the system quality and establish conditions under which finite preventive maintenance thresholds exist. A detailed computational study reveals that the optimal policy encourages exploration when the system's quality is uncertain; the policy is more exploitive when the quality is highly certain. The study also demonstrates that substantial cost savings are achieved by utilizing our MOMDP‐based method as compared to more naïve methods of accounting for heterogeneous spares.  相似文献   

20.
In the framework of a discrete Markov decision process with state information lag, this article suggests a way for selecting an optimal policy using the control limit rule. The properties sufficient for an optimal decision rule to be contained in the class of control limit rules are also studied. The degradation in expected reward from that of the perfect information process provides a measure of the potential value of improving the information system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号