首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
军工系统首获中国专利金奖的项目——"采用低偏和保偏混合光路的光纤陀螺"的研发成功,实现了我国惯性制导技术的更新换代,彻底扭转了我国宇航领域和新型武器系统相关产品受制于人的被动局面,其性能达到世界先进水平,小小的"陀螺"焕发出独特的"时代"之光。  相似文献   

2.
随着科学的进步与发展,使战争的形态带上更加强烈的信息化色彩。火力打击精确化就是战争的信息化主要表现形式之一,伊拉克战争美军以精确制导武器为主战武器,战争中所使用的精确打击武器为海湾战争的10倍左右。导航和制导是精确打击依赖的主要技术,陀螺是导航和制导系统中的核心器件之一,而光纤陀螺具有其他陀螺无法取代的许多优点。因此,光纤陀螺在航空航天航海和测地、兵器等领域中用途最广,是对目标监视和检测不可缺少的技术手段。所以,激光陀螺取代机电陀螺,光纤陀螺取代激光陀螺,已成为惯性技术专家们的共识和导航、制导系统发展的必然…  相似文献   

3.
保偏光纤作为一种特种光纤,主要应用于光纤陀螺,光纤水听器等传感器和 DWDM,EDFA 等光纤通信系统。由于光纤陀螺及光纤水听器等可用于军用惯导和声呐,属于高新科技产品,而保偏光纤又是其核心部件,因而保偏光纤一直被西方发达国家列入对我禁运的清单。  相似文献   

4.
为了实现光纤陀螺的小型化,从其核心光路部分入手,提出了采用0.85μm波长方案,并对0.85μm波长光学元器件的特性进行了分析,根据其工作机理,进行了光路元器件的小型化;结合相关技术对光路进行了优化设计,实现了光路小型化。经验证,光路小型化后能满足系统应用的要求,是一种可行的方案,对光纤陀螺工程化具有重大指导意义。  相似文献   

5.
从光子晶体光纤的原理出发,对其在光纤陀螺领域的研究现状与应用现状进行介绍。光子晶体光纤是一种新型微结构光纤,可以使用单一材料制造,通过设计微结构对光纤的折射率进行调节和匹配,以获得不同的光学传播特性,通过形状双折射来获得保偏性能的光子晶体光纤可以提供比传统光纤优异的偏振特性,改善光纤陀螺的偏振误差。此外,光子晶体光纤还具有弯曲损耗小、磁敏感度低、抗辐射等特点,能有效降低环境因素引起的陀螺误差,提高光纤陀螺的环境适应性,被认为是下一代光纤陀螺的理想选择。  相似文献   

6.
为了延长车载惯性平台的使用寿命并提高其稳定精度,在原有平台机械结构的基础上,提出采用光纤陀螺代替原有的挠性陀螺作为惯性平台的敏感元件,并重新建立了平台系统稳定回路的数学模型。仿真研究表明该数字稳定回路具有较好的动态和稳态性能,能够满足系统的设计要求。经实验验证,该光纤陀螺惯性平台系统已实现功能要求。  相似文献   

7.
光纤陀螺的应用与发展   总被引:2,自引:0,他引:2  
周泓 《国防技术基础》2010,(3):41-42,50
光纤陀螺作为惯性技术的核心器件,已经逐渐成为陀螺市场的主流产品。本文根据光纤陀螺的特点介绍了在各个领域的应用,调研了光纤陀螺在国内外的发展现状,并指出了光纤陀螺的发展趋势。  相似文献   

8.
分析了三轴光纤陀螺组合技术方案的光路和电路结构,设计了一种三轴光纤陀螺时分复用方案,对比了试验样机分时与不分时的性能指标.  相似文献   

9.
正13所、230厂分别是我国最早组建的航天惯性技术专业研究所和精密惯性器件专业制造厂,也是我国航天领域重要的惯性技术产品研制和生产基地。2013年11月,为顺应航天事业发展新形势,航天科技集团公司九院对13所和230厂实施改革重组,所厂携手踏上了打造创新型、开放型、融合型惯性导航科研生产联合体的新征程。目前,13所拥有各类惯性仪表、惯性平台系统、挠性陀螺捷联系统、激光陀螺捷联系统、光纤陀螺捷联系统、MEMS陀螺捷联系统的研发、设计、生产、试验和鉴定能力,是我国惯性技术产品较全、型号应用领域较广的"国家队"。  相似文献   

10.
光纤陀螺在导航和制导中的作用   总被引:1,自引:0,他引:1  
用于军用导航和制导系统的陀螺仪目前已经历了机械陀螺、静电陀螺、惯性陀螺、激光陀螺和光纤陀螺等4代,其中光纤陀螺是激光陀螺中的一种,它有许多其他陀螺无法取代的独特优点,如结构简单、体积小、重量轻、启动快、精度高、动态范围大、无运动和磨损部件且传输损耗低、寿命长、耐冲击、抗电磁干扰、无加速度引起的漂移,不需考虑测量仪器与被测对象的相对位置,可靠性大大优于任一机械陀螺和激光陀螺等。因此,光纤陀螺在近中程导弹、舰艇和潜艇、反潜武器以及卫星和宇宙飞船等航空航天、航海及兵器等领域中用途最广,是对目标监视和检测不可缺少的技术手段。目前发达国家正在加  相似文献   

11.
根据光纤陀螺信号静态漂移的数学模型,提出了一种迭代标定方法,可以精确地补偿光纤陀螺的标度因数和安装偏角误差.考虑光纤陀螺标度因数与温度的非线性关系,采用了BP神经网络进行温度补偿,取得了理想的效果.  相似文献   

12.
光纤陀螺的输入轴失准角温度变化特性是光纤陀螺惯性系统正交校准所面临的主要难题。提出了一种有效地消除输入轴失准角测量误差的测试方法;对三只椭圆环结构的光纤陀螺进行了输入轴失准角温度特性研究。结果表明,三只椭圆环光纤陀螺的输入轴失准角分布比较集中;此外,椭圆环光纤陀螺的输入轴失准角随着温度变化呈非单调的曲线变化,高温过程的变化速度相对较快。该结论对光纤陀螺环制作工艺的改进提供了测试依据,并有助于惯性系统正交校准的温度补偿技术研究。  相似文献   

13.
在垂直于光纤环面的轴向磁场作用下,去偏光纤陀螺产生的磁漂移与轴向磁场大小BA、光纤长度L、光纤环半径r、光源平均波长λ线性相关。而对于一制作完毕的去偏光纤陀螺,光纤长度L、光纤环半径r、光源平均波长λ相对固定,此时轴向磁漂移只与轴向磁场大小成线性关系。通过实时测量轴向磁场大小,根据轴向磁漂移补偿模型,实时软件补偿光纤陀螺的轴向磁场灵敏度。实验结果表明,通过软件补偿方法,在12 G轴向磁场下,可将去偏光纤陀螺的轴向磁场灵敏度从0.49(°)/h/G抑制到0.008(°)/h/G,磁漂移降低了2个数量级。  相似文献   

14.
耦合系数会直接影响到偏振光经过耦合器熔锥区后的光能量分布,从而影响保偏光纤耦合器的耦合性能。基于光波导模式耦合理论,建立了熔锥型保偏光纤耦合器的耦合模型,推导出了适应于纤芯为圆型、偏振主轴非平行时保偏光纤耦合器的耦合系数计算公式,形式简单、应用方便。为耦合模方程的求解以及耦合器的性能分析提供了前提条件,从而为熔锥型保偏光纤耦合器的高性能制造提供了理论指导。  相似文献   

15.
基于铽镝铁换能器的全保偏光纤磁场传感系统   总被引:1,自引:0,他引:1       下载免费PDF全文
制作了铽镝铁保偏光纤换能器,建立了全保偏马赫—曾德尔光纤干涉仪系统,采用工作点控制方法解调信号,实现了光纤磁场传感。该全保偏光纤干涉系统结构简单、抗干扰,有效解决了偏振不稳定问题。实验检测了系统对磁场幅度变化的响应特性,最小可测交流磁场信号为3×10-10T。  相似文献   

16.
基于小波分析的光纤陀螺信号处理   总被引:1,自引:0,他引:1  
在分析光纤陀螺的噪声特性的基础上,研究光纤陀螺信号滤波的方法,采用基于S te in无偏似然估计原理,对光纤陀螺信号进行小波阈值除噪,从而达到抑制光纤陀螺中存在的1/fr噪声和白噪声的目的。实验结果表明,小波滤波的方法对于抑制光纤陀螺中的噪声,提高信噪比具有良好的效果。  相似文献   

17.
讨论了光纤陀螺信号检测的基本原理,分析了锁相放大器参数选择对测试结果的影响。在干涉型去偏光纤陀螺系统中应用锁相放大器进行信号检测,可使系统阈值达到0.1deg/h,零漂达到0.4deg/h.  相似文献   

18.
光学陀螺旋转惯导系统原理探讨   总被引:12,自引:1,他引:12       下载免费PDF全文
利用旋转自动补偿光学陀螺的漂移是实现高精度惯性导航的有效途径之一,补偿的原理可以从惯性导航的误差方程中得到阐明。光学陀螺的特点决定了采用元件级的旋转方式会带来额外的误差和问题,而只能采用系统级的旋转,即整个惯性测量组合旋转补偿的方式。对一种8次180°翻转的光学陀螺惯性测量组合旋转方案进行了图形化的说明和分析,并仿真比较了旋转补偿前后的导航误差,结果表明这种系统级的补偿方案能够抵消所有惯性元件的静态漂移,从而大大提高了导航输出的位置和姿态精度。  相似文献   

19.
作为一种集成了光学、电学和机械力学的复杂系统,激光陀螺可以精确地测量物体的角速率输出。为了满足惯性导航系统长时、高精度的测量要求,研究了激光陀螺内部不同类型的传感器与激光陀螺零偏误差之间的特性;在传统的基于温度的零偏误差补偿方法的基础上,引入二频机抖激光陀螺内部温度传感器、光电二极管和粘在抖动机构上的压电陶瓷的输出信息进行复合建模;利用非线性拟合能力强的支持向量机算法,针对不同类型信息与二频机抖激光陀螺零偏误差的相关性对模型进行优化。实验结果表明,该二频机抖激光陀螺零偏误差补偿模型的补偿精度高于传统的补偿方法。  相似文献   

20.
GPS/FOG组合导航系统自适应滤波器设计   总被引:1,自引:0,他引:1  
结合GPS姿态测量系统导航的特点和光纤陀螺敏感角速度范围宽、启动速度快的特点,提出了一种光纤陀螺辅助GPS导航的方法,采用自适应滤波技术设计了组合导航算法,并进行了大量的试验,试验结果表明,利用光纤陀螺辅助GPS导航方法可行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号