首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在真空背景下的实验表明,当微秒量级的强脉冲激光与靶材相互作用时,由于靶材的升华,激光维持爆震波依然存在。爆震波产生的压缩波传入靶内,该应力波的作用是材料破坏的重要因素。而强脉冲激光引起的汽化反冲压力、热应力和烧蚀破坏也是不可忽视的因素。实验还表明,在真空背景下维持爆震波足以将后续激光屏蔽。  相似文献   

2.
《防务技术》2020,16(1):178-187
An experimental platform of a pulse detonation engine (PDE) was established to study the effect of different K2CO3 ionized seed mass contents on the detonation process. The pressure and ion concentration were detected in the detonation process of the PDE with different contents of ionized seeds. The initiation process of the PDE at different ignition frequencies was studied. The results show that the gas conductivity in the detonation process increased by adding ionized seeds to the PDE tube, and the conductivity increased with the increase in ionized seed mass content. With the increase in ionized seed mass content, the range of the conductivity decreased. The PDE was successfully ignited and formed a stable detonation wave at ignition frequencies of 5 Hz and 10 Hz, and the peak pressure of the stable detonation with the ignition frequency of 5 Hz was 17% higher than that with an ignition frequency of 10 Hz. The detonation wave intensity was weakened and degenerated to a shock wave that propagated in the tube without the fuel filled at the ignition frequency of 20 Hz.  相似文献   

3.
多点偏心起爆对破片速度增益的影响   总被引:2,自引:0,他引:2  
多点偏心起爆后,爆轰波相互作用在定向区域内产生了马赫波超压,使得该区域破片速度产生增益.利用爆轰波反射理论,建立多点偏心起爆后爆轰波相互作用特性的理论模型,并确定定向区内破片速度的增益特性.3种不同起爆方式的仿真计算和静爆试验结果对比表明,定向区内不同起爆方式得到的破片增益程度较为吻合.  相似文献   

4.
为了提高线式爆炸分离装置的安全性,本研究基于扩展有限元法,通过创建二维和三维动态裂纹扩展模型,探索了线式爆炸分离装置在爆轰波作用过程中的动态裂纹扩展和止裂机理。研究表明,分离壳体的裂纹扩展路径独立于裂纹初始角度;不考虑载荷时序时,二维和三维动态裂纹扩展的主方向分别沿着分离壳体的径向和环向;考虑载荷时序时,受不同区域应力波的联合作用,三维裂纹沿环向扩展的同时会沿着轴向扩展,但裂纹的扩展均不会影响到止裂槽以外的结构。所提方法和相应结论可为线式爆炸分离装置设计提供参考。  相似文献   

5.
《防务技术》2014,10(2):190-197
Plane wave generators (PWGs) are used to accelerate flyer plates to high velocities with their generated plane waves, which are widely used in the test of dynamic properties of materials. The traditional PWG is composed of two explosives with different detonation velocities. It is difficult to implement the related fabrication processes and control the generated waves due to its complicated structures. A simple plane wave generator is presented in this paper, which is composed of two identical cylindrical high explosive (HE) charges and an air-metal barrier. A theoretical model was established based on two different paths of the propagation of detonation waves, based on which the size of air-metal barrier was calculated for a given charge. The corresponding numerical simulations were also carried out by AUTODYN-2D® based on the calculated results, which were used to compare with the theoretical calculations. A detonation wave with a flatness of 0.039 μs within the range of 70-percent diameter of the main charge was obtained through the simulations.  相似文献   

6.
The failure mechanism of a cylindrical shell cut into fragments by circumferential detonation collision was experimentally and numerically investigated. A self-designed detonation wave regulator was used to control the detonation and cut the shell. It was found that the self-designed regulator controlled the fragment shape. The macrostructure and micro-characteristics of fragments revealed that shear fracture was a prior mechanism, the shell fractured not only at the position of detonation collision, but the crack also penetrated the shell at the first contact position of the Chapmen-Jouguet (C-J) wave. The effects of groove number and outer layer thickness on the fracture behavior were tested by simulations. When the thickness of the outer layer was 5–18 mm, it has little effect on fragmentation of the shell, and shells all fractured at similar positions. The increase of the groove number reduced the fracture possibility of the first contact position of the C-J wave. When the groove number reached 7 with a 10 mm outer layer (1/4 model), the fracture only occurred at the position of detonation collision and the fragment width rebounded.  相似文献   

7.
《防务技术》2020,16(2):341-347
One-dimensional simulations with a detailed hydrogen-oxygen reaction mechanism have been performed to investigate detonation phenomenon in a combustion light gas gun (CLGG). Convection fluxes of the Navier-Stokes equations are solved using the WAF (weighted average flux) scheme HLLC Riemann solver. A high resolution fifth-order WENO scheme for the variable extrapolation at the volume interface and a fourth-order Runge-Kutta scheme for the time advancement are used. Validation tests of the stoichiometric hydrogen-oxygen deflagration to detonation transition process shows good agreement between the computed results and the analytical and documented solutions, demonstrating the reliability on the detonation simulation of the current scheme. Simulation results of the interior ballistic process of the CLGG show that the flame propagation experiences three distinct stages. The blast detonation wave causes a high-pressure shock and hazardous oscillations in the chamber and makes the projectile accelerate with fluctuations, but has only a small improvement to the muzzle velocity.  相似文献   

8.
《防务技术》2020,16(6):1106-1115
In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave (RDW), a series of experimental tests were carried out on the rotating detonation combustor (RDC) with air-heater. The fuel and oxidizer are room-temperature liquid kerosene and preheated oxygen-enriched air, respectively. The experimental tests keep the equivalence ratio of 0.81 and the oxygen mass fraction of 35% unchanged, and the total mass flow rate is maintained at about 1000 g/s, changing the total temperature of the oxygen-enriched air from 620 K to 860 K. Three different types of instability were observed in the experiments: temporal and spatial instability, mode transition and re-initiation. The interaction between RDW and supply plenum may be the main reason for the fluctuations of detonation wave velocity and pressure peaks with time. Moreover, the inconsistent mixing of fuel and oxidizer at different circumferential positions is related to RDW oscillate spatially. The phenomenon of single-double-single wave transition is analyzed. During the transition, the initial RDW weakens until disappears, and the compression wave strengthens until it becomes a new RDW and propagates steadily. The increased deflagration between the detonation products and the fresh gas layer caused by excessively high temperature is one of the reasons for the RDC quenching and re-initiation.  相似文献   

9.
The formation mechanism of an EFP(explosively formed projectile) using a double curvature liner under the overpressure effect generated by a regular oblique reflection was investigated in this paper.Based on the detonation wave propagation theory,the change of the incident angle of the detonation wave collision at different positions and the distribution area of the overpressure on the surface of the liner were calculated.Three-dimensional numerical simulations of the formation process of the EFP with tail as well as the ability to penetrate 45# steel were performed using LS-DYNA software,and the EFP ve-locity,the penetration ability,and the forming were assessed via experiments and x-ray photographs.The experimental results coincides with those of the simulations.Results indicate that the collision of the detonation wave was controlled to be a regular oblique reflection acting on the liner by setting the di-mensions of the unit charge and maintaining the pressure at the collision point region at more than 2.4 times the CJ detonation when the incident angle approached the critical angle.The distance from the liner midline to the boundary of the area within which the pressure ratio of the regular oblique reflection pressure to the CJ detonation pressure was greater than 2.5,2,and 1.5was approximately 0.66 mm,1.32 mm,and 3.3 mm,respectively.It is noted that pressure gradient caused the liner to turn inside out in the middle to form the head of the EFP and close the two tails of the EFP at approximately 120μs.The penetration depth of the EFP into a 45# steel target exceeded 30 mm,and there was radial expansion between the head and tail of the EFE increasing the penetration resistance of the EFP.Therefore,the structural size of the unit charge and the liner can be further optimized to reduce resistance to increase the penetration ability of the EFP.  相似文献   

10.
Due to the pressure gain combustion characteristics, the rotating detonation combustor (RDC) can enhance thermodynamic cycle efficiency. Therefore, the performance of gas-turbine engine can be further improved with this combustion technology. In the present study, the RDC operation performance with a turbine guide vane (TGV) is experimentally investigated. Hydrogen and air are used as propellants while hydrogen and air mass flow rate are about 16.1 g/s and 500 g/s and the equivalence ratio is about 1.0. A pre-detonator is used to ignite the mixture. High-frequency dynamic pressure transducers and silicon pressure sensors are employed to measure pressure oscillations and static pressure in the combustion chamber. The experimental results show that the steady propagation of rotating detonation wave (RDW) is observed in the combustion chamber and the mean propagation velocity is above 1650 m/s, reaching over 84% of theoretical Chapman-Jouguet detonation velocity. Clockwise and counterclockwise propagation directions of RDW are obtained. For clockwise propagation direction, the static pressure is about 15% higher in the combustor compared with counterclockwise propagation direction, but the RDW dominant frequency is lower. When the oblique shock wave propagates across the TGV, the pressure oscillations reduces significantly. In addition, as the detonation products flow through the TGV, the static pressure drops up to 32% and 43% for clockwise and counterclockwise propagation process respectively.  相似文献   

11.
驱动管中柱状装药爆轰过程的数值模拟   总被引:1,自引:0,他引:1  
数值模拟了爆炸驱动管中柱状装药内爆轰波的传播过程.计算采用欧拉型有限体积方法,炸药及爆轰产物均采用JWL状态方程,空气采用理想气体状态方程,采用"点火-生长"模型计算化学反应速率.计算得到了驱动管内波系结构的发展过程,爆速与经验公式符合得较好.计算表明,驱动管侧壁的压力峰值在800MPa以上,而在管底中心处,由于激波的汇聚,压力峰值高达12.4GPa.  相似文献   

12.
为研究非对称结构战斗部的破片飞散特性,利用斜激波理论对爆轰波作用于壳体表面的过程进行研究,并利用自由面速度倍增定律对波在自由面反射后质点速度的计算进行简化,得到了破片飞散角的计算模型。利用D型战斗部试验数据对计算模型进行验证,结果表明,斜激波理论计算得到的破片飞散与试验结果吻合很好;当入射角较小时,壳体飞散角与入射角成线性关系。  相似文献   

13.
《防务技术》2022,18(9):1552-1562
To further explore the damage characteristics and impact response of the shaped charge to the solid rocket engine (SRE) in storage or transportation, protective armor was designed and the shelled charges model (SCM)/SRE with protective armor impacting by shaped charge tests were conducted. Air overpressures at 5 locations and axial acceleration caused by the explosion were measured, and the experimental results were compared with two air overpressure curves of propellant detonation obtained by related scholars. Afterwards, the finite element software AUTODYN was used to simulate the SCM impacted process and SRE detonation results. The penetration process and the formation cause of damage were analyzed. The detonation performance of TNT, reference propellant, and the propellant used in this experiment was compared. The axial acceleration caused by the explosion was also analyzed. By comprehensive comparison, the energy released by the detonation of this propellant is larger, and the HMX or Al particles contained in this propellant are more than the reference propellant, with a TNT equivalent of 1.168–1.196. Finally, advanced protection armor suggestions were proposed based on the theory of woven fabric rubber composite armor (WFRCA).  相似文献   

14.
《防务技术》2019,15(4):495-505
Wave shaper effect on formation behavior and penetration performance of reactive liner shaped charge (RLSC) are investigated by experiments and simulations. The reactive materials liner with a density of 2.3 g/cm3 is fabricated by cold pressing at a pressure of 300 MPa and sintering at a temperature of 380 °C. Experiments of the RLSC with and without wave shaper against steel plates are carried out at standoffs of 0.5, 1.0, and 1.5 CD (charge diameter), respectively. The experimental results show that the penetration depths and structural damage effects of steel plates decrease with increasing the standoff, while the penetration depths and the damage effects of RLSC without wave shaper are much greater than that with wave shaper at the same standoff. To understand the unusual experimental results, numerical simulations based on AUTODYN-2D code are conducted to discuss the wave shaper effect, including the propagation behavior of detonation wave, the velocity and temperature distribution of reactive jet, and penetration depth of reactive jet. The simulations indicate that, compared with RLSC without wave shaper, there is a higher temperature produced inside reactive jet with wave shaper. This unusual temperature rise effects are likely to be an important mechanism to cause the initiation delay time of reactive jet to decline, which results in significantly decreasing its penetration performance.  相似文献   

15.
The key technique of a kinetic energy rod(KER) warhead is to control the flight attitude of rods. The rods are usually designed to different shapes. A new conceptual KER named profiled rod which has large L/D ratio is described in this paper. The elastic dynamic equations of this profiled rod flying at high velocity after detonation are set up on the basis of Euler-Bernoulli beam, and the aeroelastic deformation of profiled rod is calculated by semi-analytical method for calculating the vibration characteristics of variable cross-section beam. In addition, the aeroelastic deformation of the undeformed profiled rod and the aeroelastic deformation of deformed profiled rod which is caused by the detonation of explosive are simulated by computational fluid dynamic and finite element method(CFD/FEM), respectively. A satisfactory agreement of these two methods is obtained by the comparison of two methods. The results show that the semi-analytical method for calculating the vibration characteristics of variable cross-section beam is applied to analyze the aeroelastic deformation of profiled rod flying at high velocity.  相似文献   

16.
In this paper, the kerosene/air rotating detonation engines(RDE) are numerically investigated, and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation, instabilities, and propulsive performance. A hybrid MPI + OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC) systems. A series of cases with the total pressure of 1 MPa, 1.5 MPa, 2 MPa, and the equivalence ratio of 0.9, 1, 1.4 are simulated. On one hand, the total pressure shows a significant impact on the instabilities of rotating detonation waves. The instability phenomenon is observed in cases with low total pressure (1 MPa) and weakened with the increase of the total pressure. The total pressure has a small impact on the detonation wave velocity and the specific impulse. On the other hand, the equivalence ratio shows a negligible influence on the instabilities, while it affects the ignition process and accounts for the detonation velocity deficit. It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition. Little difference was observed in the thrust with different equivalence ratios of 0.9, 1, and 1.4. The highest specific impulse was obtained in the lean fuel cases, which is around 2700 s. The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE.  相似文献   

17.
Nano-sized aluminum(Nano-Al)powders hold promise in enhancing the total energy of explosives and the metal acceleration ability at the same time.However,the near-detonation zone effects of reaction between Nano-Al with detonation products remain unclear.In this study,the overall reaction process of 170 nm Al with RDX explosive and its effect on detonation characteristics,detonation reaction zone,and the metal acceleration ability were comprehensively investigated through a variety of experiments such as the detonation velocity test,detonation pressure test,explosive/window interface velocity test and confined plate push test using high-resolution laser interferometry.Lithium fluoride(LiF),which has an inert behavior during the explosion,was used as a control to compare the contribution of the reaction of aluminum.A thermochemical approach that took into account the reactivity of aluminum and ensuing detonation products was adopted to calculate the additional energy release by afterburn.Combining the numerical simulations based on the calculated afterburn energy and experimental results,the param-eters in the detonation equation of state describing the Nano-Al reaction characteristics were calibrated.This study found that when the 170 nm Al content is from 0%to 15%,every 5%increase of aluminum resulted in about a 1.3%decrease in detonation velocity.Manganin pressure gauge measurement showed no significant enhancement in detonation pressure.The detonation reaction time and reaction zone length of RDX/Al/wax/80/15/5 explosive is 64 ns and 0.47 mm,which is respectively 14%and 8%higher than that of RDX/wax/95/5 explosive(57 ns and 0.39 mm).Explosive/window interface velocity curves show that 170 nm Al mainly reacted with the RDX detonation products after the detonation front.For the recording time of about 10 μs throughout the plate push test duration,the maximum plate velocity and plate acceleration time accelerated by RDX/Al/wax/80/15/5 explosive is 12%and 2.9 μs higher than that of RDX/LiF/wax/80/15/5,respectively,indicating that the aluminum reaction energy significantly increased the metal acceleration time and ability of the explosive.Numerical simulations with JWLM explosive equation of state show that when the detonation products expanded to 2 times the initial volume,over 80%of the aluminum had reacted,implying very high reactivity.These results are significant in attaining a clear understanding of the reaction mechanism of Nano-Al in the development of aluminized explosives.  相似文献   

18.
间接边界元法模拟含裂纹介质中弹性波的传播   总被引:2,自引:0,他引:2       下载免费PDF全文
介绍了间接边界元法的基本理论,利用二维弹性动力边界积分方程解决了地震波在含裂纹介质中的散射问题。编写了地震波在二维非均匀介质中传播的数值模拟程序,模拟了爆炸点源在含裂纹介质中的传播情况,分析了裂纹的分布及填充物对波传播的影响。结果表明,边界元法是研究含裂纹介质中弹性波传播的有效工具。  相似文献   

19.
连续旋转爆震波传播模态试验   总被引:1,自引:0,他引:1       下载免费PDF全文
通过保持空气流量不变、改变H2/air当量比开展了连续旋转爆震对比试验,发现随当量比的降低出现三种传播模态:在较高的当量比(0.90~1.86)下,连续旋转爆震波以同向传播模态传播;在较低的当量比(≈0.75)下,则以双波对撞模态传播;在中间工况,则以上述混合模态维持传播。分析了不同传播模态下的高频压力特征,并初步分析了传播模态的转换机制:当量比较高时,爆震强度较高,传播过程中的损失和速度亏损相对较小,爆震波以同向传播模态维持传播;当量比较低时,爆震强度较低,传播过程中的损失和速度亏损较大,此时无法维持同向传播模态,而以双波对撞模态传播,这是由于双波对撞模态中的激波对撞产生高温环境,有利于燃烧放热,其可能是连续旋转爆震的极限传播模态。  相似文献   

20.
《防务技术》2022,18(11):1979-1999
A quasi-isentropic study on the process of driving a cylinder with aluminized explosives was carried out to examine the influence of the aluminum (Al) reaction rate on cylinder expansion and the physical parameters of the detonation products. Based on the proposed quasi-isentropic hypothesis and relevant isentropic theories, the characteristic lines of aluminized explosives driving a cylinder were analyzed, and a quasi-isentropic model was established. This model includes the variation of the cylinder wall velocity and the physical parameters of the detonation products with the Al reaction degree. Using previously reported experimental results, the quasi-isentropic model was verified to be applicative and accurate. This model was used to calculate the physical parameters for cylinder experiments with aluminized cyclotrimethylenetrinitramine explosives with 15.0 % and 30.0 % Al content. The results show that this quasi-isentropic model can be used not only to calculate the cylinder expansion rule or Al reaction degree, but also to calculate the physical parameters of the detonation products in the process of cylinder expansion. For explosives with 15.0 % and 30.0 % Al, 24.3 % and 18.5 % of the Al was found to have reacted at 33.9 μs and 34.0 μs, respectively. The difference in Al content results in different reaction intensity, occurrence time, and duration of two forms of reaction (diffusion and kinetic) between the Al powder and the detonation products; the post-detonation burning reaction between the Al powder and the detonation products prolongs the positive pressure action time, resulting in a continuous rise in temperature after detonation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号