首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 208 毫秒
1.
本文叙述用表面裂纹法测试LD10铝合金箱底手工氩弧焊焊接接头焊肉和热影响区各个部位的断裂韧性,通过显微分析和断口形貌分析,对接头各部位的热循环和组织变化作了较详细的探讨,指出焊接接头各个部位常规力学性能与断裂韧性不同的变化规律,提出了改进焊接接头断裂韧性的意见。  相似文献   

2.
<正>采用真空电子束焊接不等厚TC4钛环,焊后对接头进行整体退火、电子束局部退火、不退火方式获得3个接头。采用X射线测残余应力、通过拉伸、弯曲试验以及光学显微镜对焊接接头组织和性能进行研究。结果表明:焊后局部退火与整体退火能降低接头残余应力且使接头区域残余应力变化稳定,其作用效果相当;真空电子束局部退火能细化焊缝针状组织,改善热影响区组织。三种状态下接头都具有较高的抗拉强度并表现出良好的弯曲性能。在无法进行整  相似文献   

3.
为获得最佳铝热焊接工艺参数,对拉伸试件进行了正交试验和二次通用旋转组合试验,研究预热温度、加压时间和预留焊缝3因素对接头强度的影响,进而寻求一组使焊接接头强韧性最高的焊接工艺参数组合。利用电子显微镜等对试件拉伸断口进行了分析,通过对比2种开始加压时间下试件的显微组织和性能,研究了这2种方法对接头强韧性的影响。结果表明:采用设计的铝热焊接试验装置和优化出的随焊加压致密化工艺参数,可使焊接接头获得大变形组织,从而获得高的强度和韧性。该项研究可为提高铝热焊接质量提供基础数据。  相似文献   

4.
非均匀焊接接头的力学建模与断裂分析   总被引:1,自引:0,他引:1  
建立了非均匀焊接接头"4区连接"的新模型,并利用积分变换-奇异积分方程的方法,研究了焊缝区的反平面断裂问题。数值计算表明:增大界面区的刚度或者适当地增大焊缝区、热影响区和界面区的宽度都有利于降低焊缝区裂纹的应力强度因子;相对于高匹配情形而言,低匹配焊接接头焊缝区的抗断裂能力明显较高。  相似文献   

5.
为克服铝合金薄板焊接接头强度偏低、韧性不足的缺点,用ER5356焊丝对不同厚度的2A12铝合金板材进行了手工氩弧焊接,并采用超声冲击处理对焊接接头进行全覆盖强化处理。采用金相显微镜观察了处理和未处理焊接接头的显微组织结构,对接头的力学性能进行了测试分析,分析了超声冲击处理改善2A12铝合金焊接接头力学性能的机理。结果表明:铝合金焊接接头经超声冲击强化处理后,6 mm和4 mm厚板材对接接头的抗拉强度分别提高了17.4%和23.7%,延伸率分别提高了28%和44%,焊缝表层组织得到明显细化。分析认为:晶粒大幅细化、组织致密化和缺陷减少,是超声冲击处理改善铝合金焊接接头抗拉伸性能的主要原因。  相似文献   

6.
本报告应用断裂力学方法,对铝合金贮箱箱底进行了初步的分析。应力计算主要考虑了箱底在内压作用下的薄膜应力和由边缘效应引起的弯曲应力以及假定的焊接残余应力。断裂分析包括对表面裂纹临界尺寸的线弹性和弹塑性计算,给出了母材和焊缝处的临界裂纹尺寸;确定了加载20次到201次时所允许的最大初始裂纹尺寸。对一维和二维裂纹扩展模型进行了比较,指明二维扩展模型更为合理。最后对验证实验以及超声波检查配合使用进行了简单的讨论。给出了在本文条件下,贮箱箱底的无损检验标准和确定验证试验的方案。  相似文献   

7.
针对三维表面裂纹扩展形态和轨迹难以预测的特点,基于ANSYS有限元分析软件,利用三维裂纹扩展仿真方法,开发三维裂纹扩展程序,研究典型的三维表面单裂纹与三维非等大共面表面双裂纹扩展轨迹,实现了任意三维多裂纹扩展轨迹的数值模拟。主要研究内容与结论如下:针对三维表面单裂纹模型,当初始裂纹形状c/a>1时,最深处的应力强度因子值大于自由表面处应力强度因子值,随着裂纹的不断扩展,前缘会渐渐趋于稳定的圆形。而对于三维非等大共面表面双裂纹,较大的裂纹扩展速率大于较小的裂纹。开始时2条裂纹均沿光滑的样条曲线扩展,后来受到另一条裂纹的影响,在彼此接近处,由于应力放大作用,此部位的应力强度因子变大,扩展速率也会高于裂纹前缘其他部位。  相似文献   

8.
为提高战场装备的应急抢修能力,以火药和2Al/3CuO系高热剂为焊接热源,开发了一种新型的便携式焊接材料——火药复合焊条,对其焊缝的组织形貌及性能进行研究.试验结果表明,火药复合焊条的焊接属于熔化焊,焊缝与基体之间存在明显的过渡区,焊缝成形良好,焊缝的抗拉强度大于400MPa,高于母材本身强度,能够满足战场应急抢修能力的需要.  相似文献   

9.
为解决湿法焊接焊缝质量不高的问题,对铝青铜材料展开水下湿法激光焊接实验,利用扫描电子显微镜(Scanning Electron Microscope,SEM)、显微硬度仪、万能试验机分别检测和分析了焊接接头的微观组织和力学性能。结果表明:铝青铜水下湿法焊接会出现大量气孔,水深增加会导致气孔增多,提高焊接速度可以改善焊缝成形质量,通过在基体表面预置自蔓延粉末能够有效减少气孔;焊缝中上部为胞状晶组织,底部为发达的树枝晶;焊缝平均硬度为240 HV,与基体相比提高了50%;拉伸试验试件均断裂在焊缝处,平均拉伸强度为235 MPa,为基体的43%。  相似文献   

10.
一种Cu基自蔓延焊笔焊接Q235和45钢焊缝的组织与性能   总被引:1,自引:0,他引:1  
利用研制的一种可焊接6~10 mm厚钢结构件的Cu基自蔓延焊笔,焊接了10 mm厚的Q235钢和45钢,研究了其焊缝的组织形貌和性能,发现焊缝与基体间存在熔合区,焊缝属于熔焊焊接.焊缝的拉伸强度达282 MPa,弯曲强度达628 MPa,冲击韧度为46.43 J/cm2;焊缝显微硬度达HV0.1230,熔合区显微硬度达HV0.1255.6,高于基体热影响区的硬度.  相似文献   

11.
《防务技术》2014,10(1):47-59
Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel (LHF) consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding (SMAW) and Flux cored arc welding (FCAW) were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.  相似文献   

12.
《防务技术》2019,15(3):353-362
AA5059 is one of the high strength armor grade aluminium alloy that finds its applications in the military vehicles due to the higher resistance against the armor piercing (AP) threats. This study aimed at finding the best suitable process among the fusion welding processes such as gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) by evaluating the tensile properties of AA5059 aluminium alloy joints. The fracture path was identified by mapping the low hardness distribution profile (LHDP) across the weld cross section under tensile loading. Optical and scanning electron microscopies were used to characterize the microstructural features of the welded joints at various zones. It is evident from the results that GTAW joints showed superior tensile properties compared to GMAW joints and this is primarily owing to the presence of finer grains in the weld metal zone (WMZ) and narrow heat-affected zone (HAZ). The lower heat input associated with the GTAW process effectively reduced the size of the WMZ and HAZ compared to GMAW process. Lower heat input of GTAW process results in faster cooling rate which hinders the grain growth and reduces the evaporation of magnesium in weld metal compared to GMAW joints. The fracture surface of GTAW joint consists of more dimples than GMAW joints which is an indication that the GTAW joint possess improved ductility than GMAW joint.  相似文献   

13.
《防务技术》2015,11(3)
Super 304 H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. Chloride stress corrosion cracking is the most likely life limiting failure with austenitic stainless steel tubing. Welding may worsen the stress corrosion cracking susceptibility of the material. Stress corrosion cracking susceptibility of Super 304 H parent metal and gas tungsten arc(GTA) welded joints were studied by constant load tests in 45% boiling Mg Cl2 solution. Stress corrosion cracking resistance of Super 304 H stainless steel was deteriorated by GTA welding due to the formation of susceptible microstructure in the HAZ of the weld joint and the residual stresses. The mechanism of cracking was found to be anodic path cracking, with transgranular nature of crack propagation. Linear relationships were derived to predict the time to failure by extrapolating the rate of steady state elongation.  相似文献   

14.
《防务技术》2015,11(3)
Aluminium alloy AA2219 is a high strength alloy belonging to 2000 series. It has been widely used for aerospace applications, especially for construction of cryogenic fuel tank. However, arc welding of AA2219 material is very critical. The major problems that arise in arc welding of AA2219 are the adverse development of residual stresses and the re-distribution as well as dissolution of copper rich phase in the weld joint.These effects increase with increase in heat input. Thus, special attention was taken to especially thick section welding of AA2219-T87 aluminium alloy. Hence, the present work describes the 25 mm-thick AA2219-T87 aluminium alloy plate butt welded by GTAW and GMAW processes using multi-pass welding procedure in double V groove design. The transverse shrinkage, conventional mechanical and metallurgical properties of both the locations on weld joints were studied. It is observed that the fair copper rich cellular(CRC) network is on Side-A of both the weldments. Further, it is noticed that, the severity of weld thermal cycle near to the fusion line of HAZ is reduced due to low heat input in GTAW process which results in non dissolution of copper rich phase. Based on the mechanical and metallurgical properties it is inferred that GTAW process is used to improve the aforementioned characteristics of weld joints in comparison to GMAW process.  相似文献   

15.
《防务技术》2015,11(3)
Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding(FSW). In this investigation, a comparative evaluation of mechanical(tensile, impact,hardness) properties and microstructural features of shielded metal arc(SMA), gas metal arc(GMA) and friction stir welded(FSW) naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.  相似文献   

16.
In this research, a detailed multi-physics study has been carried out by numerically simulating a solid fractured gun barrel for 20 thermo-mechanical cycles. The numerical model is based on thermal effects, mechanical stress fields and fatigue crack mechanics. Elastic-plastic material data of modified AISI 4340 at temperatures ranging from 25 to 1200 °C and at strain rates of 4, 16, 32 and 48 s−1 was acquired from high-temperature compression tests. This was used as material property data in the simulation model. The boundary conditions applied are kept similar to the working gun barrel during continuous firing. A methodology has been provided to define thermo-mechanically active surface-to-surface type interface between the crack faces for a better approximation of stresses at the crack tip. Comparison of results from non-autofrettaged and autofrettaged simulation models provide useful information about the evolution of strains and stresses in the barrel at different points under combined thermo-mechanical loading cycles in both cases. The effect of thermal fatigue under already induced compressive yield due to autofrettage and the progressive degradation of the accumulated stresses due to thermo-mechanical cyclic loads on the internal surface of the gun barrel (mimicking the continuous firing scenario) has been analyzed. Comparison between energy release rate at tips of varying crack lengths due to cyclic thermo-mechanical loading in the non-autofrettaged and autofrettaged gun has been carried out.  相似文献   

17.
《防务技术》2015,11(2)
Friction stir welding(FSW) of high strength aluminum alloys has been emerged as an alternative joining technique to avoid the problems during fusion welding.In recent times FSW is being used for armor grade AA7075 aluminum alloy in defense,aerospace and marine applications where it has to serve in non uniform loading and corrosive environments.Even though friction stir welds of AA7075 alloy possess better mechanical properties but suffer from poor corrosion resistance.The present work involves use of retrogression and reaging(RRA) post weld heat treatment to improve the corrosion resistance of welded joints of aluminum alloys.An attempt also has been made to change the chemical composition of the weld nugget by adding B4C nano particles with the aid of the FSW on a specially prepared base metal plate in butt position.The effects of peak aged condition(T6),RRA and addition of B4C nano particles on microstructure,hardness and pitting corrosion of nugget zone of the friction stir welds of AA7075 alloy have been studied.Even though RRA improved the pitting corrosion resistance,its hardness was slightly lost.Significant improvement in pitting corrosion resistance was achieved with addition of boron carbide powder and post weld heat treatment of RRA.  相似文献   

18.
采用预制缺口的平板和加筋板结构试样,对 921A 钢进行了拉伸疲劳载荷作用下的低周疲劳试验得到了拉伸疲劳载荷作用下舰体结构破口裂纹扩展规律,提出了破损舰体结构在疲劳载荷作用下裂纹开裂和后续扩展的判据.该试验结果可直接用于分析和预报破损舰船结构在波浪中航行时的裂纹扩展情况,并为破损舰船的剩余疲劳寿命预报奠定了基础.  相似文献   

19.
《防务技术》2015,11(3)
The transverse shrinkage, mechanical and metallurgical properties of AISI: 310 S ASS weld joints prepared by P-GMAW and DP-GMAW processes were investigated. It was observed that the use of the DP-GMAW process improves the aforementioned characteristics in comparison to that of the P-GMAW process. The enhanced quality of weld joints obtained with DP-GMAW process is primarily due to the combined effect of pulsed current and thermal pulsation(low frequency pulse). During the thermal pulsation period, there is a fluctuation of wire feed rate,which results in the further increase in welding current and the decrease in arc voltage. Because of this synchronization between welding current and arc voltage during the period of low frequency pulse, the DP-GMAW deposit introduces comparatively more thermal shock compared to the P-GMAW deposit, thereby reducing the heat input and improves the properties of weld joints.  相似文献   

20.
暴露在湿热环境中的复合材料修补金属裂损结构易吸湿老化,导致该结构性能下降,服役寿命缩短。为研究吸湿性对复合材料修补金属裂损结构修补效果和耐久性的影响,利用试验方法分析了吸湿性对复合材料胶补金属裂损结构及胶黏剂力学性能的影响;利用有限元方法评估了吸湿性对复合材料胶补金属裂损结构试验件修补效果和耐久性的影响。研究结果表明:吸湿后含穿透双边裂纹铝合金板玻璃纤维单面胶补试验件的疲劳裂纹扩展寿命和极限载荷的平均值分别下降为吸湿前的71%和90%;吸湿造成拉伸条件下复合材料胶补金属裂损结构胶层失效模式由内聚破坏为主转变为界面破坏为主;在"湿-热"老化30天后,E44/聚酰胺环氧树脂胶黏剂试验件吸水饱和,弹性模量下降为未老化前的40%,塑性应变超过了总应变的25%;有限元分析发现胶层损伤受吸湿影响明显,吸湿性加速了胶层损伤,且裂纹长度越长,加速作用越明显;同时吸湿使得裂纹尖端的J积分值急剧增大,导致修补结构的疲劳裂纹扩展寿命缩短,裂纹长度越长,吸湿性对于复合材料胶接修补效果的危害越严重。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号