首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A cutting plane method for solving concave minimization problems with linear constraints has been advanced by Tui. The principle behind this cutting plane has been applied to integer programming by Balas, Young, Glover, and others under the name of convexity cuts. This paper relates the question of finiteness of Tui's method to the so-called generalized lattice point problem of mathematical programming and gives a sufficient condition for terminating Tui's method. The paper then presents several branch-and-bound algorithms for solving concave minimization problems with linear constraints with the Tui cut as the basis for the algorithm. Finally, some computational experience is reported for the fixed-charge transportation problem.  相似文献   

2.
A general algorithm is developed for minimizing a well defined concave function over a convex polyhedron. The algorithm is basically a branch and bound technique which utilizes a special cutting plane procedure to' identify the global minimum extreme point of the convex polyhedron. The indicated cutting plane method is based on Glover's general theory for constructing legitimate cuts to identify certain points in a given convex polyhedron. It is shown that the crux of the algorithm is the development of a linear undrestimator for the constrained concave objective function. Applications of the algorithm to the fixed-charge problem, the separable concave programming problem, the quadratic problem, and the 0-1 mixed integer problem are discussed. Computer results for the fixed-charge problem are also presented.  相似文献   

3.
Capacity improvement and conditional penalties are two computational aides for fathoming subproblems in a branch‐and‐bound procedure. In this paper, we apply these techniques to the fixed charge transportation problem (FCTP) and show how relaxations of the FCTP subproblems can be posed as concave minimization problems (rather than LP relaxations). Using the concave relaxations, we propose a new conditional penalty and three new types of capacity improvement techniques for the FCTP. Based on computational experiments using a standard set of FCTP test problems, the new capacity improvement and penalty techniques are responsible for a three‐fold reduction in the CPU time for the branch‐and‐bound algorithm and nearly a tenfold reduction in the number of subproblems that need to be evaluated in the branch‐and‐bound enumeration tree. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 341–355, 1999  相似文献   

4.
This paper presents a generalization, called polaroid, of the concept of polar sets A list of properties satisfied by polaroids is established indicating that the new concept nay be fruitfully used in an area of non-convex (called here polar) programming as well as in integer programming, by means of polaroid cuts; this class of new cuts contains the ones defined by Tuy for concave programming (a special case of polar programming) and by Balas integer programming; it furthermore provides for new degrees of freedom in the construction of algorithms in the above-mentioned areas of mathematical programming.  相似文献   

5.
This article is concerned with the optimal location of any number (n) of facilities in relation to any number (m) of destinations on the Euclidean plane. The criterion to be satisfied is the minimization of total weighted distances where the distances are rectangular. The destinations may be either single points, lines or rectangular areas. A gradient reduction solution procedure is described which has the property that the direction of descent is determined by the geometrical properties of the problem.  相似文献   

6.
Despite its ability to result in more effective network plans, the telecommunication network planning problem with signal‐to‐interference ratio constraints gained less attention than the power‐based one because of its complexity. In this article, we provide an exact solution method for this class of problems that combines combinatorial Benders decomposition, classical Benders decomposition, and valid cuts in a nested way. Combinatorial Benders decomposition is first applied, leading to a binary master problem and a mixed integer subproblem. The subproblem is then decomposed using classical Benders decomposition. The algorithm is enhanced using valid cuts that are generated at the classical Benders subproblem and are added to the combinatorial Benders master problem. The valid cuts proved efficient in reducing the number of times the combinatorial Benders master problem is solved and in reducing the overall computational time. More than 120 instances of the W‐CDMA network planning problem ranging from 20 demand points and 10 base stations to 140 demand points and 30 base stations are solved to optimality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

7.
Logistical planning problems are complicated in practice because planners have to deal with the challenges of demand planning and supply replenishment, while taking into account the issues of (i) inventory perishability and storage charges, (ii) management of backlog and/or lost sales, and (iii) cost saving opportunities due to economies of scale in order replenishment and transportation. It is therefore not surprising that many logistical planning problems are computationally difficult, and finding a good solution to these problems necessitates the development of many ad hoc algorithmic procedures to address various features of the planning problems. In this article, we identify simple conditions and structural properties associated with these logistical planning problems in which the warehouse is managed as a cross‐docking facility. Despite the nonlinear cost structures in the problems, we show that a solution that is within ε‐optimality can be obtained by solving a related piece‐wise linear concave cost multi‐commodity network flow problem. An immediate consequence of this result is that certain classes of logistical planning problems can be approximated by a factor of (1 + ε) in polynomial time. This significantly improves upon the results found in literature for these classes of problems. We also show that the piece‐wise linear concave cost network flow problem can be approximated to within a logarithmic factor via a large scale linear programming relaxation. We use polymatroidal constraints to capture the piece‐wise concavity feature of the cost functions. This gives rise to a unified and generic LP‐based approach for a large class of complicated logistical planning problems. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

8.
Consider a network G(N. A) with n nodes, where node 1 designates its source node and node n designates its sink node. The cuts (Zi, =), i= 1…, n - 1 are called one-node cuts if 1 ? Zi,. n q Zi, Z1-? {1}, Zi ? Zi+1 and Zi and Zi+l differ by only one node. It is shown that these one-node cuts decompose G into 1 m n/2 subnetworks with known minimal cuts. Under certain circumstances, the proposed one-node decomposition can produce a minimal cut for G in 0(n2 ) machine operations. It is also shown that, under certain conditions, one-node cuts produce no decomposition. An alternative procedure is also introduced to overcome this situation. It is shown that this alternative procedure has the computational complexity of 0(n3).  相似文献   

9.
We study the one-warehouse multi-retailer problem under deterministic dynamic demand and concave batch order costs, where order batches have an identical capacity and the order cost function for each facility is concave within the batch. Under appropriate assumptions on holding cost structure, we obtain lower bounds via a decomposition that splits the two-echelon problem into single-facility subproblems, then propose approximation algorithms by judiciously recombining the subproblem solutions. For piecewise linear concave batch order costs with a constant number of slopes we obtain a constant-factor approximation, while for general concave batch costs we propose an approximation within a logarithmic factor of optimality. We also extend some results to subadditive order and/or holding costs.  相似文献   

10.
In this article, we study generalizations of some of the inventory models with nonlinear costs considered by Rosling in (Oper. Res. 50 (2002) 797–809). In particular, we extend the study of both the periodic review and the compound renewal demand processes from a constant lead time to a random lead time. We find that the quasiconvexity properties of the cost function (and therefore the existence of optimal (s, S) policies), holds true when the lead time has suitable log‐concavity properties. The results are derived by structural properties of renewal delayed processes stopped at an independent random time and by the study of log‐concavity properties of compound distributions. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 345–356, 2015  相似文献   

11.
A new method for the solution of minimax and minisum location–allocation problems with Euclidean distances is suggested. The method is based on providing differentiable approximations to the objective functions. Thus, if we would like to locate m service facilities with respect to n given demand points, we have to minimize a nonlinear unconstrained function in the 2m variables x1,y1, ?,xm,ym. This has been done very efficiently using a quasi-Newton method. Since both the original problems and their approximations are neither convex nor concave, the solutions attained may be only local minima. Quite surprisingly, for small problems of locating two or three service points, the global minimum was reached even when the initial position was far from the final result. In both the minisum and minimax cases, large problems of locating 10 service facilities among 100 demand points have been solved. The minima reached in these problems are only local, which is seen by having different solutions for different initial guesses. For practical purposes, one can take different initial positions and choose the final result with best values of the objective function. The likelihood of the best results obtained for these large problems to be close to the global minimum is discussed. We also discuss the possibility of extending the method to cases in which the costs are not necessarily proportional to the Euclidean distances but may be more general functions of the demand and service points coordinates. The method also can be extended easily to similar three-dimensional problems.  相似文献   

12.
In this article, we consider a multi‐product closed‐loop supply chain network design problem where we locate collection centers and remanufacturing facilities while coordinating the forward and reverse flows in the network so as to minimize the processing, transportation, and fixed location costs. The problem of interest is motivated by the practice of an original equipment manufacturer in the automotive industry that provides service parts for vehicle maintenance and repair. We provide an effective problem formulation that is amenable to efficient Benders reformulation and an exact solution approach. More specifically, we develop an efficient dual solution approach to generate strong Benders cuts, and, in addition to the classical single Benders cut approach, we propose three different approaches for adding multiple Benders cuts. These cuts are obtained via dual problem disaggregation based either on the forward and reverse flows, or the products, or both. We present computational results which illustrate the superior performance of the proposed solution methodology with multiple Benders cuts in comparison to the branch‐and‐cut approach as well as the traditional Benders decomposition approach with a single cut. In particular, we observe that the use of multiple Benders cuts generates stronger lower bounds and promotes faster convergence to optimality. We also observe that if the model parameters are such that the different costs are not balanced, but, rather, are biased towards one of the major cost categories (processing, transportation or fixed location costs), the time required to obtain the optimal solution decreases considerably when using the proposed solution methodology as well as the branch‐and‐cut approach. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

13.
In this paper we first introduce and study the notion of failure profiles which is based on the concepts of paths and cuts in system reliability. The relationship of failure profiles to two notions of component importance is highlighted, and an expression for the density function of the lifetime of a coherent system, with independent and not necessarily identical component lifetimes, is derived. We then demonstrate the way that failure profiles can be used to establish likelihood ratio orderings of lifetimes of two systems. Finally we use failure profiles to obtain bounds, in the likelihood ratio sense, on the lifetimes of coherent systems with independent and not necessarily identical component lifetimes. The bounds are relatively easy to compute and use. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

14.
We provide an expression for the Shannon entropy of mixed r‐out‐of‐ n systems when the lifetimes of the components are independent and identically distributed. The expression gives the system's entropy in terms of the system signature, the distribution and density functions of the lifetime model, and the information measures of the beta distribution. Bounds for the system's entropy are obtained by direct applications of the concavity of the entropy and the information inequality.Copyright © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 202–206, 2014  相似文献   

15.
In this paper we discuss the properties of a Bilinear Programming problem, and develop a convergent cutting plane algorithm. The cuts involve only a subset of the variables and preserve the special structure of the constraints involving the remaining variables. The cuts are deeper than other similar cuts.  相似文献   

16.
Let be a basic solution to the linear programming problem subject to: where R is the index set associated with the nonbasic variables. If all of the variables are constrained to be nonnegative integers and xu is not an integer in the basic solution, the linear constraint is implied. We prove that including these “cuts” in a specified way yields a finite dual simplex algorithm for the pure integer programming problem. The relation of these modified Dantzig cuts to Gomory cuts is discussed.  相似文献   

17.
一种适用任意平面多边形的三角剖分算法   总被引:9,自引:0,他引:9       下载免费PDF全文
针对基于凹凸顶点判定的三角剖分算法适用范围有限的缺点 ,提出了将凹凸顶点判定与连接多边形内外边界相结合的适用任意平面多边形的三角剖分算法 GTP( General Triangulation of Polygons)。GTP计算速度快、适用范围广的良好特点已在应用中得到证实  相似文献   

18.
In the Swapping Problem (SP), we are given a complete graph, a set of object types, and a vehicle of unit capacity. An initial state specifies the object type currently located at each vertex (at most one type per vertex). A final state describes where these object types must be repositioned. In general, there exist several identical objects for a given object type, yielding multiple possible destinations for each object. The SP consists of finding a shortest vehicle route starting and ending at an arbitrary vertex, in such a way that each object is repositioned in its final state. This article exhibits some structural properties of optimal solutions and proposes a branch‐and‐cut algorithm based on a 0‐1 formulation of the problem. Computational results on random instances containing up to 200 vertices and eight object types are reported. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

19.
本文所研究探讨的是:在平面上任给五个点(任三个点不在同一直线上),当构成的两个射影线束中对应直线对互不平行时所确定椭圆的作图方法。  相似文献   

20.
When solving location problems in practice it is quite common to aggregate demand points into centroids. Solving a location problem with aggregated demand data is computationally easier, but the aggregation process introduces error. We develop theory and algorithms for certain types of centroid aggregations for rectilinear 1‐median problems. The objective is to construct an aggregation that minimizes the maximum aggregation error. We focus on row‐column aggregations, and make use of aggregation results for 1‐median problems on the line to do aggregation for 1‐median problems in the plane. The aggregations developed for the 1‐median problem are then used to construct approximate n‐median problems. We test the theory computationally on n‐median problems (n ≥ 1) using both randomly generated, as well as real, data. Every error measure we consider can be well approximated by some power function in the number of aggregate demand points. Each such function exhibits decreasing returns to scale. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 614–637, 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号