首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this paper we study the scheduling problem that considers both production and job delivery at the same time with machine availability considerations. Only one vehicle is available to deliver jobs in a fixed transportation time to a distribution center. The vehicle can load at most K jobs as a delivery batch in one shipment due to the vehicle capacity constraint. The objective is to minimize the arrival time of the last delivery batch to the distribution center. Since machines may not always be available over the production period in real life due to preventive maintenance, we incorporate machine availability into the models. Three scenarios of the problem are studied. For the problem in which the jobs are processed on a single machine and the jobs interrupted by the unavailable machine interval are resumable, we provide a polynomial algorithm to solve the problem optimally. For the problem in which the jobs are processed on a single machine and the interrupted jobs are nonresumable, we first show that the problem is NP‐hard. We then propose a heuristic with a worst‐case error bound of 1/2 and show that the bound is tight. For the problem in which the jobs are processed on either one of two parallel machines, where only one machine has an unavailable interval and the interrupted jobs are resumable, we propose a heuristic with a worst‐case error bound of 2/3. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

2.
We study a two‐machine flow shop scheduling problem with no‐wait in process, in which one of the machines is not available during a specified time interval. We consider three scenarios of handing the operation affected by the nonavailability interval. Its processing may (i) start from scratch after the interval, or (ii) be resumed from the point of interruption, or (iii) be partially restarted after the interval. The objective is to minimize the makespan. We present an approximation algorithm that for all these scenarios delivers a worst‐case ratio of 3/2. For the second scenario, we offer a 4/3‐approximation algorithm. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

3.
We consider problem of scheduling jobs on‐line on batch processing machines with dynamic job arrivals to minimize makespan. A batch machine can handle up to B jobs simultaneously. The jobs that are processed together from a batch, and all jobs in a batch start and complete at the same time. The processing time of a batch is given by the longest processing time of any job in the batch. Each job becomes available at its arrival time, which is unknown in advance, and its processing time becomes known upon its arrival. In the first part of this paper, we address the single batch processing machine scheduling problem. First we deal with two variants: the unbounded model where B is sufficiently large and the bounded model where jobs have two distinct arrival times. For both variants, we provide on‐line algorithms with worst‐case ratio (the inverse of the Golden ratio) and prove that these results are the best possible. Furthermore, we generalize our algorithms to the general case and show a worst‐case ratio of 2. We then consider the unbounded case for parallel batch processing machine scheduling. Lower bound are given, and two on‐line algorithms are presented. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 241–258, 2001  相似文献   

4.
We study a deterministic two‐machine flowshop scheduling problem with an assumption that one of the two machines is not available in a specified time period. This period can be due to a breakdown, preventive maintenance, or processing unfinished jobs from a previous planning horizon. The problem is known to be NP‐hard. Pseudopolynomial dynamic programming algorithms and heuristics with worst case error bounds are given in the literature to solve the problem. They are different for the cases when the unavailability interval is for the first or second machine. The existence of a fully polynomial time approximation scheme (FPTAS) was formulated as an open conjecture in the literature. In this paper, we show that the two cases of the problem under study are equivalent to similar partition type problems. Then we derive a generic FPTAS for the latter problems with O(n54) time complexity. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

5.
Here, we revisit the bounded batch scheduling problem with nonidentical job sizes on single and parallel identical machines, with the objective of minimizing the makespan. For the single machine case, we present an algorithm which calls an online algorithm (chosen arbitrarily) for the one‐dimensional bin‐packing problem as a sub‐procedure, and prove that its worst‐case ratio is the same as the absolute performance ratio of . Hence, there exists an algorithm with worst‐case ratio , which is better than any known upper bound on this problem. For the parallel machines case, we prove that there does not exist any polynomial‐time algorithm with worst‐case ratio smaller than 2 unless P = NP, even if all jobs have unit processing time. Then we present an algorithm with worst‐case ratio arbitrarily close to 2. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 351–358, 2014  相似文献   

6.
In this paper we consider the problem of scheduling a set of jobs on a single machine on which a rate‐modifying activity may be performed. The rate‐modifying activity is an activity that changes the production rate of the machine. So the processing time of a job is a variable, which depends on whether it is scheduled before or after the rate‐modifying activity. We assume that the rate‐modifying activity can take place only at certain predetermined time points, which is a constrained case of a similar problem discussed in the literature. The decisions under consideration are whether and when to schedule the rate‐modifying activity, and how to sequence the jobs in order to minimize some objectives. We study the problems of minimizing makespan and total completion time. We first analyze the computational complexity of both problems for most of the possible versions. The analysis shows that the problems are NP‐hard even for some special cases. Furthermore, for the NP‐hard cases of the makespan problem, we present a pseudo‐polynomial time optimal algorithm and a fully polynomial time approximation scheme. For the total completion time problem, we provide a pseudo‐polynomial time optimal algorithm for the case with agreeable modifying rates. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

7.
8.
We derive sufficient conditions which, when satisfied, guarantee that an optimal solution for a single‐machine scheduling problem is also optimal for the corresponding proportionate flow shop scheduling problem. We then utilize these sufficient conditions to show the solvability in polynomial time of numerous proportionate flow shop scheduling problems with fixed job processing times, position‐dependent job processing times, controllable job processing times, and also problems with job rejection. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 595–603, 2015  相似文献   

9.
We consider a parallel‐machine scheduling problem with jobs that require setups. The duration of a setup does not depend only on the job just completed but on a number of preceding jobs. These setup times are referred to as history‐dependent. Such a scheduling problem is often encountered in the food processing industry as well as in other process industries. In our model, we consider two types of setup times—a regular setup time and a major setup time that becomes necessary after several “hard‐to‐clean” jobs have been processed on the same machine. We consider multiple objectives, including facility utilization, flexibility, number of major setups, and tardiness. We solve several special cases assuming predetermined job sequences and propose strongly polynomial time algorithms to determine the optimal timing of the major setups for given job sequences. We also extend our analysis to develop pseudopolynomial time algorithms for cases with additional objectives, including the total weighted completion time, the total weighted tardiness, and the weighted number of tardy jobs. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

10.
We consider a problem of scheduling jobs on m parallel machines. The machines are dedicated, i.e., for each job the processing machine is known in advance. We mainly concentrate on the model in which at any time there is one unit of an additional resource. Any job may be assigned the resource and this reduces its processing time. A job that is given the resource uses it at each time of its processing. No two jobs are allowed to use the resource simultaneously. The objective is to minimize the makespan. We prove that the two‐machine problem is NP‐hard in the ordinary sense, describe a pseudopolynomial dynamic programming algorithm and convert it into an FPTAS. For the problem with an arbitrary number of machines we present an algorithm with a worst‐case ratio close to 3/2, and close to 3, if a job can be given several units of the resource. For the problem with a fixed number of machines we give a PTAS. Virtually all algorithms rely on a certain variant of the linear knapsack problem (maximization, minimization, multiple‐choice, bicriteria). © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

11.
We consider the problem of scheduling n independent and simultaneously available jobs without preemption on a single machine, where the machine has a fixed maintenance activity. The objective is to find the optimal job sequence to minimize the total amount of late work, where the late work of a job is the amount of processing of the job that is performed after its due date. We first discuss the approximability of the problem. We then develop two pseudo‐polynomial dynamic programming algorithms and a fully polynomial‐time approximation scheme for the problem. Finally, we conduct extensive numerical studies to evaluate the performance of the proposed algorithms. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 172–183, 2016  相似文献   

12.
In this paper, we study a m‐parallel machine scheduling problem with a non‐crossing constraint motivated by crane scheduling in ports. We decompose the problem to allow time allocations to be determined once crane assignments are known and construct a backtracking search scheme that manipulates domain reduction and pruning strategies. Simple approximation heuristics are developed, one of which guarantees solutions to be at most two times the optimum. For large‐scale problems, a simulated annealing heuristic that uses random neighborhood generation is provided. Computational experiments are conducted to test the algorithms. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   

13.
We consider scheduling a set of jobs with deadlines to minimize the total weighted late work on a single machine, where the late work of a job is the amount of processing of the job that is scheduled after its due date and before its deadline. This is the first study on scheduling with the late work criterion under the deadline restriction. In this paper, we show that (i) the problem is unary NP‐hard even if all the jobs have a unit weight, (ii) the problem is binary NP‐hard and admits a pseudo‐polynomial‐time algorithm and a fully polynomial‐time approximation scheme if all the jobs have a common due date, and (iii) some special cases of the problem are polynomially solvable.  相似文献   

14.
We consider parallel‐machine scheduling with a common server and job preemption to minimize the makespan. While the non‐preemptive version of the problem is strongly NP‐hard, the complexity status of the preemptive version has remained open. We show that the preemptive version is NP‐hard even if there is a fixed number of machines. We give a pseudo‐polynomial time algorithm to solve the case with two machines. We show that the case with an arbitrary number of machines is unary NP‐hard, analyze the performance ratios of some natural heuristic algorithms, and present several solvable special cases. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 388–398, 2017  相似文献   

15.
We consider open‐shop scheduling problems where operation‐processing times are a convex decreasing function of a common limited nonrenewable resource. The scheduler's objective is to determine the optimal job sequence on each machine and the optimal resource allocation for each operation in order to minimize the makespan. We prove that this problem is NP‐hard, but for the special case of the two‐machine problem we provide an efficient optimization algorithm. We also provide a fully polynomial approximation scheme for solving the preemptive case. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

16.
We consider the problem of maximizing the number of on‐time jobs on two uniform parallel machines. We show that a straightforward extension of an algorithm developed for the simpler two identical parallel machines problem yields a heuristic with a worst‐case ratio bound of at least . We then show that the infusion of a “look ahead” feature into the aforementioned algorithm results in a heuristic with the tight worst‐case ratio bound of , which, to our knowledge, is the tightest worst‐case ratio bound available for the problem. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

17.
The costs of many economic activities such as production, purchasing, distribution, and inventory exhibit economies of scale under which the average unit cost decreases as the total volume of the activity increases. In this paper, we consider an economic lot‐sizing problem with general economies of scale cost functions. Our model is applicable to both nonperishable and perishable products. For perishable products, the deterioration rate and inventory carrying cost in each period depend on the age of the inventory. Realizing that the problem is NP‐hard, we analyze the effectiveness of easily implementable policies. We show that the cost of the best Consecutive‐Cover‐Ordering (CCO) policy, which can be found in polynomial time, is guaranteed to be no more than (4 + 5)/7 ≈ 1.52 times the optimal cost. In addition, if the ordering cost function does not change from period to period, the cost of the best CCO policy is no more than 1.5 times the optimal cost. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

18.
In this article we introduce a 2‐machine flowshop with processing flexibility. Two processing modes are available for each task: namely, processing by the designated processor, and processing simultaneously by both processors. The objective studied is makespan minimization. This production environment is encountered in repetitive manufacturing shops equipped with processors that have the flexibility to execute orders either individually or in coordination. In the latter case, the product designer exploits processing synergies between two processors so as to execute a particular task much faster than a dedicated processor. This type of flowshop environment is also encountered in labor‐intensive assembly lines where products moving downstream can be processed either in the designated assembly stations or by pulling together the work teams of adjacent stations. This scheduling problem requires determining the mode of operation of each task, and the subsequent scheduling that preserves the flowshop constraints. We show that the problem is ordinary NP‐complete and obtain an optimal solution using a dynamic programming algorithm with considerable computational requirements for medium and large problems. Then, we present a number of dynamic programming relaxations and analyze their worst‐case error performance. Finally, we present a polynomial time heuristic with worst‐case error performance comparable to that of the dynamic programming relaxations. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

19.
We study two‐agent scheduling on a single sequential and compatible batching machine in which jobs in each batch are processed sequentially and compatibility means that jobs of distinct agents can be processed in a common batch. A fixed setup time is required before each batch is started. Each agent seeks to optimize some scheduling criterion that depends on the completion times of its own jobs only. We consider several scheduling problems arising from different combinations of some regular scheduling criteria, including the maximum cost (embracing lateness and makespan as its special cases), the total completion time, and the (weighted) number of tardy jobs. Our goal is to find an optimal schedule that minimizes the objective value of one agent, subject to an upper bound on the objective value of the other agent. For each problem under consideration, we provide either a polynomial‐time or a pseudo‐polynomial‐time algorithm to solve it. We also devise a fully polynomial‐time approximation scheme when both agents’ scheduling criteria are the weighted number of tardy jobs.  相似文献   

20.
Most papers in the scheduling field assume that a job can be processed by only one machine at a time. Namely, they use a one‐job‐on‐one‐machine model. In many industry settings, this may not be an adequate model. Motivated by human resource planning, diagnosable microprocessor systems, berth allocation, and manufacturing systems that may require several resources simultaneously to process a job, we study the problem with a one‐job‐on‐multiple‐machine model. In our model, there are several alternatives that can be used to process a job. In each alternative, several machines need to process simultaneously the job assigned. Our purpose is to select an alternative for each job and then to schedule jobs to minimize the completion time of all jobs. In this paper, we provide a pseudopolynomial algorithm to solve optimally the two‐machine problem, and a combination of a fully polynomial scheme and a heuristic to solve the three‐machine problem. We then extend the results to a general m‐machine problem. Our algorithms also provide an effective lower bounding scheme which lays the foundation for solving optimally the general m‐machine problem. Furthermore, our algorithms can also be applied to solve a special case of the three‐machine problem in pseudopolynomial time. Both pseudopolynomial algorithms (for two‐machine and three‐machine problems) are much more efficient than those in the literature. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 57–74, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号