首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Motivated by the presence of loss‐averse decision making behavior in practice, this article considers a supply chain consisting of a firm and strategic consumers who possess an S‐shaped loss‐averse utility function. In the model, consumers decide the purchase timing and the firm chooses the inventory level. We find that the loss‐averse consumers' strategic purchasing behavior is determined by their perceived gain and loss from strategic purchase delay, and the given rationing risk. Thus, the firm that is cognizant of this property tailors its inventory stocking policy based on the consumers' loss‐averse behavior such as their perceived values of gain and loss, and their sensitivity to them. We also demonstrate that the firm's equilibrium inventory stocking policy reflects both the economic logic of the traditional newsvendor inventory model, and the loss‐averse behavior of consumers. The equilibrium order quantity is significantly different from those derived from models that assume that the consumers are risk neutral and homogeneous in their valuations. We show that the firm that ignores strategic consumer's loss‐aversion behavior tends to keep an unnecessarily high inventory level that leads to excessive leftovers. Our numerical experiments further reveal that in some extreme cases the firm that ignores strategic consumer's loss‐aversion behavior generates almost 92% more leftovers than the firm that possesses consumers’ loss‐aversion information and takes it into account when making managerial decisions. To mitigate the consumer's forward‐looking behavior, we propose the adoption of the practice of agile supply chain management, which possesses the following attributes: (i) procuring inventory after observing real‐time demand information, (ii) enhanced design (which maintains the current production mix but improves the product performance to a higher level), and (iii) customized design (which maintains the current performance level but increases the variety of the current production line to meet consumers’ specific demands). We show that such a practice can induce the consumer to make early purchases by increasing their rationing risk, increasing the product value, or diversifying the product line. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 435–453, 2015  相似文献   

2.
When facing high levels of overstock inventories, firms often push their salesforce to work harder than usual to attract more demand, and one way to achieve that is to offer attractive incentives. However, most research on the optimal design of salesforce incentives ignores this dependency and assumes that operational decisions of production/inventory management are separable from design of salesforce incentives. We investigate this dependency in the problem of joint salesforce incentive design and inventory/production control. We develop a dynamic Principal‐Agent model with both Moral Hazard and Adverse Selection in which the principal is strategic and risk‐neutral but the agent is myopic and risk‐averse. We find the optimal joint incentive design and inventory control strategy, and demonstrate the impact of operational decisions on the design of a compensation package. The optimal strategy is characterized by a menu of inventory‐dependent salesforce compensation contracts. We show that the optimal compensation package depends highly on the operational decisions; when inventory levels are high, (a) the firm offers a more attractive contract and (b) the contract is effective in inducing the salesforce to work harder than usual. In contrast, when inventory levels are low, the firm can offer a less attractive compensation package, but still expect the salesforce to work hard enough. In addition, we show that although the inventory/production management and the design of salesforce compensation package are highly correlated, information acquisition through contract design allows the firm to implement traditional inventory control policies: a market‐based state‐dependent policy (with a constant base‐stock level when the inventory is low) that makes use of the extracted market condition from the agent is optimal. This work appears to be the first article on operations that addresses the important interplay between inventory/production control and salesforce compensation decisions in a dynamic setting. Our findings shed light on the effective integration of these two significant aspects for the successful operation of a firm. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 320–340, 2014  相似文献   

3.
In this study, we consider n firms, each of which produces and sells a different product. The n firms face a common demand stream which requests all their products as a complete set. In addition to the common demand stream, each firm also faces a dedicated demand stream which requires only its own product. The common and dedicated demands are uncertain and follow a general, joint, continuous distribution. Before the demands are realized, each firm needs to determine its capacity or production quantity to maximize its own expected profit. We formulate the problem as a noncooperative game. The sales price per unit for the common demand could be higher or lower than the unit price for the dedicated demand, which affects the firm's inventory rationing policy. Hence, the outcome of the game varies. All of the prices are first assumed to be exogenous. We characterize Nash equilibrium(s) of the game. At the end of the article, we also provide some results for the endogenous pricing. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 59: 146–159, 2012  相似文献   

4.
We consider a make‐to‐order manufacturer facing random demand from two classes of customers. We develop an integrated model for reserving capacity in anticipation of future order arrivals from high priority customers and setting due dates for incoming orders. Our research exhibits two distinct features: (1) we explicitly model the manufacturer's uncertainty about the customers' due date preferences for future orders; and (2) we utilize a service level measure for reserving capacity rather than estimating short and long term implications of due date quoting with a penalty cost function. We identify an interesting effect (“t‐pooling”) that arises when the (partial) knowledge of customer due date preferences is utilized in making capacity reservation and order allocation decisions. We characterize the relationship between the customer due date preferences and the required reservation quantities and show that not considering the t‐pooling effect (as done in traditional capacity and inventory rationing literature) leads to excessive capacity reservations. Numerical analyses are conducted to investigate the behavior and performance of our capacity reservation and due date quoting approach in a dynamic setting with multiple planning horizons and roll‐overs. One interesting and seemingly counterintuitive finding of our analyses is that under certain conditions reserving capacity for high priority customers not only improves high priority fulfillment, but also increases the overall system fill rate. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

5.
In this study, we analyze the joint pricing and inventory management during new product introduction when product shortage creates additional demand due to hype. We develop a two‐period model in which a firm launches its product at the beginning of the first period, before it observes sales in the two periods. The product is successful with an exogenous probability, or unsuccessful with the complementary probability. The hype in the second period is observed only when the product is successful. The firm learns the actual status of the product only after observing the first‐period demand. The firm must decide the stocking level and price of the product jointly at the beginning of each of the two periods. In this article, we derive some structural properties of the optimal prices and inventory levels, and show that (i) firms do not always exploit hype, (ii) firms do not always increase the price of a successful product in the second period, (iii) firms may price out an unsuccessful product in the first period if the success probability is above a threshold, and (iv) such a threshold probability is decreasing in the first‐period market potential of the successful product. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 304–320, 2015  相似文献   

6.
Supplier diversification, contingent sourcing, and demand switching (whereby a firm shifts customers to a different product if their preferred product is unavailable), are key building blocks of a disruption‐management strategy for firms that sell multiple products over a single season. In this article, we evaluate 12 possible disruption‐management strategies (combinations of the basic building‐block tactics) in the context of a two‐product newsvendor. We investigate the influence of nine attributes of the firm, its supplier(s), and its products on the firs preference for the various strategies. These attributes include supplier reliability, supplier failure correlation, payment responsibility in the event of a supply failure, product contribution margin, product substitutability, demand uncertainties and correlation, and the decision makes risk aversion. Our results show that contingent sourcing is preferred to supplier diversification as the supply risk (failure probability) increases, but diversification is preferred to contingent sourcing as the demand risk (demand uncertainty) increases. We find that demand switching is not effective at managing supply risk if the products are sourced from the same set of suppliers. Demand switching is effective at managing demand risk and so can be preferred to the other tactics if supply risk is low. Risk aversion makes contingent sourcing preferable over a wider set of supply and demand‐risk combinations. We also find a two‐tactic strategy provides almost the same benefit as a three‐tactic strategy for most reasonable supply and demand‐risk combinations. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

7.
In this article we explore how two competing firms locate and set capacities to serve time‐sensitive customers. Because customers are time‐sensitive, they may decline to place an order from either competitor if their expected waiting time is large. We develop a two‐stage game where firms set capacities and then locations, and show that three types of subgame perfect equilibria are possible: local monopoly (in which each customer is served by a single firm, but some customers may be left unserved), constrained local monopoly (in which firms serve the entire interval of customers but do not compete with each other), and constrained competition (in which firms also serve the entire interval of customers, but now compete for some customers). We perform a comparative statics analysis to illustrate differences in the equilibrium behavior of a duopolist and a coordinated monopolist. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

8.
Multi-echelon logistic systems are essential parts of the service support function of high technology firms. The combination of technological developments and competitive pressures has led to the development of services systems with a unique set of characteristics. These characteristics include (1) low demand probabilities: (2) high cost items; (3) complex echelon structures; (4) existence of pooling mechanisms among stocking locations at the same echelon level; (5) high priority for service, which is often expressed in terms of response time service levels for product groups of items: (6) scrapping of failed parts; and (7) recycling of issued stock due to diagnostic use. This article develops a comprehensive model of a stochastic, multi-echelon inventory system that takes account of the above characteristics. Solutions to the constrained optimization problem are found using a branch and bound procedure. The results of applying this procedure to a spare parts inventory system for a computer manufacturer have led to a number of important policy conclusions.  相似文献   

9.
This article studies the inventory competition under yield uncertainty. Two firms with random yield compete for substitutable demand: If one firm suffers a stockout, which can be caused by yield failure, its unsatisfied customers may switch to its competitor. We first study the case in which two competing firms decide order quantities based on the exogenous reliability levels. The results from the traditional inventory competition are generalized to the case with yield uncertainty and we find that quantity and reliability can be complementary instruments in the competition. Furthermore, we allow the firms to endogenously improve their yield reliability before competing in quantity. We show that the reliability game is submodular under some assumptions. The results indicate that the competition in quantity can discourage the reliability improvement. With an extensive numerical study, we also demonstrate the robustness of our analytical results in more general settings. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 107–126, 2015  相似文献   

10.
For most firms, especially the small‐ and medium‐sized ones, the operational decisions are affected by their internal capital and ability to obtain external capital. However, the majority of the literature on dynamic inventory control ignores the firm's financial status and financing issues. An important question that arises is: what are the optimal inventory and financing policies for firms with limited internal capital and limited access to external capital? In this article, we study a dynamic inventory control problem where a capital‐constrained firm periodically purchases a product from a supplier and sells it to a market with random demands. In each period, the firm can use its own capital and/or borrow a short‐term loan to purchase the product, with the interest rate being nondecreasing in the loan size. The objective is to maximize the firm's expected terminal wealth at the end of the planning horizon. We show that the optimal inventory policy in each period is an equity‐level‐dependent base‐stock policy, where the equity level is the sum of the firm's capital level and the value of its on‐hand inventory evaluated at the purchasing cost; and the structure of the optimal policy can be characterized by four intervals of the equity level. Our results shed light on the dynamic inventory control for firms with limited capital and short‐term financing capabilities.Copyright © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 184–201, 2014  相似文献   

11.
In this article, we explore when firms have an incentive to hide (or reveal) their capacity information. We consider two firms that aim to maximize profits over time and face limited capacity. One or both of the firms have private information on their own capacity levels, and they update their beliefs about their rival's capacity based on their observation of the other firm's output. We focus on credible revelation mechanisms—a firm may signal its capacity through overproduction, compared to its myopic production levels. We characterize conditions when high‐capacity firms may have the incentive and capability to signal their capacity levels by overproduction. We show that prior beliefs about capacity play a crucial, and surprisingly complex, role on whether the firm would prefer to reveal its capacity or not. A surprising result is that, despite the fact that it may be best for the high‐capacity firm to overproduce to reveal its capacity when capacity information is private, it may end up with more profits than if all capacity information were public knowledge in the first place. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

12.
This article examines a problem faced by a firm procuring a material input or good from a set of suppliers. The cost to procure the material from any given supplier is concave in the amount ordered from the supplier, up to a supplier‐specific capacity limit. This NP‐hard problem is further complicated by the observation that capacities are often uncertain in practice, due for instance to production shortages at the suppliers, or competition from other firms. We accommodate this uncertainty in a worst‐case (robust) fashion by modeling an adversarial entity (which we call the “follower”) with a limited procurement budget. The follower reduces supplier capacity to maximize the minimum cost required for our firm to procure its required goods. To guard against uncertainty, the firm can “protect” any supplier at a cost (e.g., by signing a contract with the supplier that guarantees supply availability, or investing in machine upgrades that guarantee the supplier's ability to produce goods at a desired level), ensuring that the anticipated capacity of that supplier will indeed be available. The problem we consider is thus a three‐stage game in which the firm first chooses which suppliers' capacities to protect, the follower acts next to reduce capacity from unprotected suppliers, and the firm then satisfies its demand using the remaining capacity. We formulate a three‐stage mixed‐integer program that is well‐suited to decomposition techniques and develop an effective cutting‐plane algorithm for its solution. The corresponding algorithmic approach solves a sequence of scaled and relaxed problem instances, which enables solving problems having much larger data values when compared to standard techniques. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

13.
In this article, we introduce the capacitated warehouse location model with risk pooling (CLMRP), which captures the interdependence between capacity issues and the inventory management at the warehouses. The CLMRP models a logistics system in which a single plant ships one type of product to a set of retailers, each with an uncertain demand. Warehouses serve as the direct intermediary between the plant and the retailers for the shipment of the product and also retain safety stock to provide appropriate service levels to the retailers. The CLMRP minimizes the sum of the fixed facility location, transportation, and inventory carrying costs. The model simultaneously determines warehouse locations, shipment sizes from the plant to the warehouses, the working inventory, and safety stock levels at the warehouses and the assignment of retailers to the warehouses. The costs at each warehouse exhibit initially economies of scale and then an exponential increase due to the capacity limitations. We show that this problem can be formulated as a nonlinear integer program in which the objective function is neither concave nor convex. A Lagrangian relaxation solution algorithm is proposed. The Lagrangian subproblem is also a nonlinear integer program. An efficient algorithm is developed for the linear relaxation of this subproblem. The Lagrangian relaxation algorithm provides near‐optimal solutions with reasonable computational requirements for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

14.
Firms form various alliances or use brand extensions to enter new markets in order to improve their operational efficiency and create a positive spillover. However, they do not always know the implications of these strategies for market entry and multimarket competition because the sale of products in one market can have negative spillover effects on product sales in other markets. We present an analytical framework to examine whether and how (i.e., by choosing alliance entry or independent entry) competing firms should enter a market in a situation where market spillovers occur when a firm enters a spillover-producing market to sell products that may increase or decrease the consumers' willingness to pay for products in the primary market. Our analysis shows that the operational efficiency (or quality differentiation ability) of firms in a spillover-producing market varies, and hence, the impact of market spillovers differs for firms. We identify the key factors, such as bargaining power, brand value difference in the primary market, and the extent of efficiencies and spillovers, that determine the firms benefitting from the different entry strategies. Specifically, we show that firms would be more willing to choose an alliance strategy to enter a spillover-producing market if the negative spillover is small and alliance efficiency is high. In contrast, if an alliance entry is not favored, the firms' relative operational efficiency is crucial for them to decide whether to enter the market independently under moderate spillover conditions. Finally, we show the implications of market entry strategies for managers.  相似文献   

15.
There has been a dramatic increase over the past decade in the number of firms that source finished product from overseas. Although this has reduced procurement costs, it has increased supply risk; procurement lead times are longer and are often unreliable. In deciding when and how much to order, firms must consider the lead time risk and the demand risk, i.e., the accuracy of their demand forecast. To improve the accuracy of its demand forecast, a firm may update its forecast as the selling season approaches. In this article we consider both forecast updating and lead time uncertainty. We characterize the firm's optimal procurement policy, and we prove that, with multiplicative forecast revisions, the firm's optimal procurement time is independent of the demand forecast evolution but that the optimal procurement quantity is not. This leads to a number of important managerial insights into the firm's planning process. We show that the firm becomes less sensitive to lead time variability as the forecast updating process becomes more efficient. Interestingly, a forecast‐updating firm might procure earlier than a firm with no forecast updating. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

16.
A firm making quantity decision under uncertainty loses profit if its private information is leaked to competitors. Outsourcing increases this risk as a third party supplier may leak information for its own benefit. The firm may choose to conceal information from the competitors by entering in a confidentiality agreement with the supplier. This, however, diminishes the firm's ability to dampen competition by signaling a higher quantity commitment. We examine this trade‐off in a stylized supply chain in which two firms, endowed with private demand information, order sequentially from a common supplier, and engage in differentiated quantity competition. In our model, the supplier can set different wholesale prices for firms, and the second‐mover firm could be better informed. Contrary to what is expected, information concealment is not always beneficial to the first mover. We characterize conditions under which the first mover firm will not prefer concealing information. We show that this depends on the relative informativeness of the second mover and is moderated by competition intensity. We examine the supplier's incentive in participating in information concealment, and develop a contract that enables it for wider set of parameter values. We extend our analysis to examine firms' incentive to improve information. © 2014 Wiley Periodicals, Inc. 62:1–15, 2015  相似文献   

17.
We evaluate an approach to decrease inventory costs at retail inventory locations that share a production facility. The retail locations sell the same product but differ in the variance of retail demand. Inventory policies at retail locations generate replenishment orders for the production facility. The production facility carries no finished goods inventory. Thus, production lead time for an order is the sojourn time in a single server queueing system. This lead time affects inventory costs at retail locations. We examine the impact of moving from a First Come First Served (FCFS) production rule for orders arriving at the production facility to a rule in which we provide non‐preemptive priority (PR) to orders from retail locations with higher demand uncertainty. We provide three approximations for the ratio of inventory costs under PR and FCFS and use them to identify conditions under which PR decreases retail inventory costs over FCFS. We then use a Direct Approach to establish conditions when PR decreases retail inventory costs over FCFS. We extend the results to orders from locations that differ in the mean and variance of demand uncertainty. The analysis suggests that tailoring lead times to product demand characteristics may decrease system inventory costs. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 376–390, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10016  相似文献   

18.
We develop a risk‐sensitive strategic facility sizing model that makes use of readily obtainable data and addresses both capacity and responsiveness considerations. We focus on facilities whose original size cannot be adjusted over time and limits the total production equipment they can hold, which is added sequentially during a finite planning horizon. The model is parsimonious by design for compatibility with the nature of available data during early planning stages. We model demand via a univariate random variable with arbitrary forecast profiles for equipment expansion, and assume the supporting equipment additions are continuous and decided ex‐post. Under constant absolute risk aversion, operating profits are the closed‐form solution to a nontrivial linear program, thus characterizing the sizing decision via a single first‐order condition. This solution has several desired features, including the optimal facility size being eventually decreasing in forecast uncertainty and decreasing in risk aversion, as well as being generally robust to demand forecast uncertainty and cost errors. We provide structural results and show that ignoring risk considerations can lead to poor facility sizing decisions that deteriorate with increased forecast uncertainty. Existing models ignore risk considerations and assume the facility size can be adjusted over time, effectively shortening the planning horizon. Our main contribution is in addressing the problem that arises when that assumption is relaxed and, as a result, risk sensitivity and the challenges introduced by longer planning horizons and higher uncertainty must be considered. Finally, we derive accurate spreadsheet‐implementable approximations to the optimal solution, which make this model a practical capacity planning tool.© 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

19.
We develop a competitive pricing model which combines the complexity of time‐varying demand and cost functions and that of scale economies arising from dynamic lot sizing costs. Each firm can replenish inventory in each of the T periods into which the planning horizon is partitioned. Fixed as well as variable procurement costs are incurred for each procurement order, along with inventory carrying costs. Each firm adopts, at the beginning of the planning horizon, a (single) price to be employed throughout the horizon. On the basis of each period's system of demand equations, these prices determine a time series of demands for each firm, which needs to service them with an optimal corresponding dynamic lot sizing plan. We establish the existence of a price equilibrium and associated optimal dynamic lotsizing plans, under mild conditions. We also design efficient procedures to compute the equilibrium prices and dynamic lotsizing plans.© 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

20.
We consider the optimal control of a production inventory‐system with a single product and two customer classes where items are produced one unit at a time. Upon arrival, customer orders can be fulfilled from existing inventory, if there is any, backordered, or rejected. The two classes are differentiated by their backorder and lost sales costs. At each decision epoch, we must determine whether or not to produce an item and if so, whether to use this item to increase inventory or to reduce backlog. At each decision epoch, we must also determine whether or not to satisfy demand from a particular class (should one arise), backorder it, or reject it. In doing so, we must balance inventory holding costs against the costs of backordering and lost sales. We formulate the problem as a Markov decision process and use it to characterize the structure of the optimal policy. We show that the optimal policy can be described by three state‐dependent thresholds: a production base‐stock level and two order‐admission levels, one for each class. The production base‐stock level determines when production takes place and how to allocate items that are produced. This base‐stock level also determines when orders from the class with the lower shortage costs (Class 2) are backordered and not fulfilled from inventory. The order‐admission levels determine when orders should be rejected. We show that the threshold levels are monotonic (either nonincreasing or nondecreasing) in the backorder level of Class 2. We also characterize analytically the sensitivity of these thresholds to the various cost parameters. Using numerical results, we compare the performance of the optimal policy against several heuristics and show that those that do not allow for the possibility of both backordering and rejecting orders can perform poorly.© 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号