首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 266 毫秒
1.
传统基于RS-Turbo码的系统需要提供RS译码及Turho译码2种不同的译码算法需求,使得译码器的软硬件设计复杂化,无法满足无人机通信要求.从理论上分析了Turbo码的性能特点,提出一种改进的二维turbo迭代算法,并应用在无人机通信仿真中.仿真结果表明该算法在低信噪比时能够提升误码率性能,且易于工程实现.  相似文献   

2.
对应用于光通信系统的原始turbo码提出了改进方案:用BCH码做外码、turbo码做内码组成一种新的串行级联卷积码(SCCC).提出了相应的全面迭代最大后验概率(MAP)译码算法.推导了级联码的不可检测错误概率.对SCCC码的误码率进行了仿真,仿真结果表明,SCCC码在高信噪比时降低了通信系统的误码率,可适用于军用光通信系统.  相似文献   

3.
在球形译码算法中,初始半径的选择与分配是影响算法性能与复杂度的重要因素.针对球形译码算法在低信噪比时复杂度高的问题,提出了一种新的基于V-BLAST信号模型的初始半径选择与(准)线性半径分配方案,并分析了应用该方案的两种典型球形译码算法流程的性能与复杂度,其分析方法适用于任意不均匀半径分配方案.分析与仿真表明,与传统的球形译码算法相比,在信噪比较低时,采用该方案的球形译码算法的复杂度显著降低;在较宽信噪比范围内,其误码率性能接近最大似然检测性能.  相似文献   

4.
为降低LDPC码错误平层,提出一种基于环分类搜索的数列分割移位LDPC码构造算法。该算法具有码长、码率和列重的任意可设性,同时该类码的Tanner图围长至少为8。循环移位因子可以通过简单的代数表达式描述,从而降低内存需求。仿真结果表明,当误码率达到10-5时,数列分割移位LDPC(496,248)码相对于PEG-LDPC码获得了约1.9dB的性能提升;且随着信噪比的升高,两条译码性能曲线之间的差距将更为增大。此外,列重为3的数列分割移位LDPC码(6144,5376)在信噪比4.6dB以后并未出现明显的错误平层。该构造算法与PS-LDPC码相比在误码率达到10-8时大约获得0.25dB增益,特别在错误平层区域其译码性能优于围长为4和6的PEG构造算法,其构造复杂度和耗时也相较于PS-LDPC码和PEG-LDPC码构造算法展现出一定优势。通过基于Tanner图的诱捕集分析方法,统计(496,248)APPS-LDPC码中由8环组成的部分小型诱捕集并不存在,从而证明了其错误平层降低的原因。  相似文献   

5.
为降低LDPC(低密度奇偶校验码)码错误平层,提出一种基于环分类搜索的APPS-LDPC(数列分割移位的LDPC)码构造算法。该算法具有码长、码率和列重的任意可设性,同时该类码的Tanner图围长至少为8。循环移位因子可以通过简单的代数表达式描述,从而降低内存需求。仿真结果表明,当误码率达到10-5时,APPS-LDPC码(496,248)相对于PEG-LDPC(渐进边增长LDPC)码获得了约1.9 d B的性能提升;随着信噪比的升高,两条译码性能曲线之间的差距将更大。此外,列重为3的APPS-LDPC码(6144,5376)在信噪比4.6 d B以后并未出现明显的错误平层。该构造算法与PS-LDPC码相比,在误码率达到10-8时大约获得0.25 d B增益;与围长为4和6的PEG构造算法相比,在错误平层区域其译码性能极优;同时相较于此两者,其构造复杂度和耗时也展现出一定优势。通过基于Tanner图的诱捕集分析方法,统计APPS-LDPC码(496,248)中由8环组成的部分小型诱捕集并不存在,从而证明了其错误平层降低的原因。  相似文献   

6.
针对标准LDPC码译码中洪水消息传递机制的不足,提出以串行机制进行消息传递,按照变量节点的顺序进行消息处理和传递,对每个变量节点同时接收校验消息和发送变量消息。该方法使更新的消息能够很快进入当前迭代计算,改善了LDPC迭代译码的收敛性能。通过对几种常用译码算法的仿真比较,验证了在复杂度不增加的情况下,该方法性能优于其它几种最大后验概率准则的译码方法,且算法收敛快,是一种能较好兼顾性能与实现复杂度的译码方法。  相似文献   

7.
对高斯信道下LDPC(Low-Density Parity-Check)码的传统的译码算法进行分析,指出影响收敛速度的原因,并提出了一种基于整数运算的加速收敛的LDPC码译码算法。该算法融合分层译码(Layered Belief Propagation)算法、带偏移量的最小和算法(Offset Min-Sum)以及量化的优势。仿真验证表明该算法有效地减少了译码复杂度,加速了译码收敛,且性能上同传统的量化最小和算法相比没有下降。  相似文献   

8.
提出了一种低复杂度的LDPC码译码算法CSPA(combined sum-productalgorithm),该算法初始迭代采用和积译码算法(SPA),当大部分信息趋于稳定时,将算法切换到选择节点更新算法(SNU)。仿真表明:在中长码时,新算法克服了SNU算法收敛速度慢和较高错误平台的不足;与和积译码算法相比,该算法以微弱的性能损失换取复杂度的有效降低。  相似文献   

9.
本文在简单介绍了Turbo码基本原理的基础上,主要分析了Turbo码的基于MAP译码算法和基于SOVA译码算法的迭代译码方法及其性能。为了进一步验证Turbo码的迭代译码性能,并与卷积码的性能进行比较,重点论述了Turbo码在DS-CDMA移动通信系统的码率与扩频增益折衷设计、迭代译码性能和仿真结果分析。  相似文献   

10.
TPC(Turbo Product Code)是一种较易实现、性能较好的Turbo码方案,它的应用前景极其广泛。1998年Pyndiah提出了一种适用于TPC的译码算法,取得了良好的性能。本文从硬件实现的角度对这种算法提出了几点改进意见,使其较适用于硬件实现,在此基础上讨论了子码译码器并行处理对时延和规模的影响,探讨其实用的可能性。  相似文献   

11.
文中通过分析信息在短环中传递的特性,提出了一种基于节点选择更新的简化LDPC译码算法。该算法可以通过在一定程度上避免短环对译码的影响来降低译码运算复杂度。仿真结果表明对于二元以及多元LDPC码,该算法相对于BP算法只有少量性能损失。  相似文献   

12.
针对校验矩阵形如准循环双对角阵的结构化LDPC码,对比研究了两类高效的编码算法:矩阵分解编码算法和分项累加递归编码算法,证明了两类算法从实现角度是等价的,但分项累加递归编码算法推导更为直观,且便于硬件并行实现。基于分项累加编码算法,提出了一种适合准循环双对角LDPC码的部分并行编码结构,设计实现了IEEE 802.11n标准中的LDPC码编码器。FPGA实现结果表明,所设计的LDPC编码器具有硬件开销较小、吞吐率高的优点,在码长为1944bit、码率为5/6时信息比特吞吐率最高可达13Gbps。  相似文献   

13.
针对校验矩阵形如准循环双对角阵的结构化LDPC码,对比研究了两类高效的编码算法:矩阵分解编码算法和分项累加递归编码算法,指出了两种算法从实现角度是等效的,但分项累加递归编码算法推导更为直观,且便于硬件并行实现。基于分项累加编码算法,提出了一种适合准循环双对角LDPC码的部分并行编码结构,设计实现了IEEE 802.11n标准中的LDPC码编码器。FPGA实现结果表明,所设计的LDPC编码器硬件开销较少,信息比特吞吐率最高能达到13Gbps。  相似文献   

14.
提出了一种基于图形处理单元(graphic processing unit, GPU)的5G软件无线电准循环低密度奇偶校验(low density parity check, LDPC)码译码器,为了节省片上和片下带宽,采用码字缩短和打孔技术、两级量化和数据打包方案,以提升数据带宽的利用率。实验基于Nvidia RTX 2080Ti GPU平台实现了高码率情况下的最小和近似译码算法的并行译码,通过分析GPU上的最优线程设置,将码率为5/6的(2 080,1 760) LDPC算法的译码吞吐率提升至1.38 Gbit/s,译码吞吐率性能优于现有其他基于GPU的LDPC译码器。  相似文献   

15.
最小和算法(MSA)折中了译码性能和运算复杂度两个方面,是低密度奇偶校验码(LDPC码)硬件实现最常用的译码算法。比特后验概率对数似然比(LLR)是LDPC码MSA译码的关键参数,现有的高阶调制信号比特后验概率LLR计算方法及简化算法都需要估计噪声方差,估计值影响译码性能。论文从分析M阶无记忆二维调制信号比特后验概率LLR通用的计算方法入手,研究了适用于MSA译码的高阶调制信号比特后验概率LLR简化算法,该算法无需估计噪声方差,进一步降低了运算量和实现复杂度。  相似文献   

16.
根据流星余迹信道的特点,在分析LDPC编译码算法的基础上,提出在流星余迹通信(MBC)中使用基于条件矩阵的LDPC编码,使其适应流星信道特点,提高系统性能。仿真结果表明,这种LDPC编码较RS码和Mackay随机构造的LDPC编码有更优的性能。  相似文献   

17.
针对BSC信道,提出了一种线性分组码的最大似然译码差错概率下界的计算方法.根据最大似然译码算法原理,首先将译码差错概率转化为差错事件的联合概率,基于改进的Dawson-Sankoff界的优化准则,推导出BSC信道下线性分组码差错冗余事件的判决准则,最后得到差错概率下界的计算表达式.该下界只依赖于码字的Hamming重量...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号