首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This paper examines three types of sensitivity analysis on a firm's responsive pricing and responsive production strategies under imperfect demand updating. Demand has a multiplicative form where the market size updates according to a bivariate normal model. First, we show that both responsive production and responsive pricing resemble the classical pricing newsvendor with posterior demand uncertainty in terms of the optimal performance and first‐stage decision. Second, we show that the performance of responsive production is sensitive to the first‐stage decision, but responsive pricing is insensitive. This suggests that a “posterior rationale” (ie, using the optimal production decision from the classical pricing newsvendor with expected posterior uncertainty) allows a simple and near‐optimal first‐stage production heuristic for responsive pricing. However, responsive production obtains higher expected profits than responsive pricing under certain conditions. This implies that the firm's ability to calculate the first‐stage decision correctly can help determine which responsive strategy to use. Lastly, we find that the firm's performance is not sensitive to the parameter uncertainty coming from the market size, total uncertainty level and information quality, but is sensitive to uncertainty originating from the procurement cost and price‐elasticity.  相似文献   

2.
We develop a competitive pricing model which combines the complexity of time‐varying demand and cost functions and that of scale economies arising from dynamic lot sizing costs. Each firm can replenish inventory in each of the T periods into which the planning horizon is partitioned. Fixed as well as variable procurement costs are incurred for each procurement order, along with inventory carrying costs. Each firm adopts, at the beginning of the planning horizon, a (single) price to be employed throughout the horizon. On the basis of each period's system of demand equations, these prices determine a time series of demands for each firm, which needs to service them with an optimal corresponding dynamic lot sizing plan. We establish the existence of a price equilibrium and associated optimal dynamic lotsizing plans, under mild conditions. We also design efficient procedures to compute the equilibrium prices and dynamic lotsizing plans.© 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

3.
In this study, we consider n firms, each of which produces and sells a different product. The n firms face a common demand stream which requests all their products as a complete set. In addition to the common demand stream, each firm also faces a dedicated demand stream which requires only its own product. The common and dedicated demands are uncertain and follow a general, joint, continuous distribution. Before the demands are realized, each firm needs to determine its capacity or production quantity to maximize its own expected profit. We formulate the problem as a noncooperative game. The sales price per unit for the common demand could be higher or lower than the unit price for the dedicated demand, which affects the firm's inventory rationing policy. Hence, the outcome of the game varies. All of the prices are first assumed to be exogenous. We characterize Nash equilibrium(s) of the game. At the end of the article, we also provide some results for the endogenous pricing. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 59: 146–159, 2012  相似文献   

4.
When selling complementary products, manufacturers can often benefit from considering the resulting cross‐market interdependencies. Although using independent retailers makes it difficult to internalize these positive externalities, the ensuing double marginalization can mitigate within‐market competition. We use standard game theoretic analysis to determine optimal distribution channel strategies (through independent retailers or integrated) for competing manufacturers who participate in markets for complements. Our results suggest that a firm's optimal channel choice is highly dependent on its competitive positioning. A firm with a competitive advantage in terms of product characteristics (customer preferences) or production capabilities (cost) might benefit from selling through company‐controlled stores, allowing coordinated pricing across the two markets, whereas a less competitive firm might be better off using independent channel intermediaries to mitigate price competition. We consider two scenarios depending on whether the two firms make their distribution channel decisions sequentially or simultaneously. Although firms are unlikely to make such decisions at exactly the same instant, the simultaneous model also serves as a proxy for the scenario where firms decide sequentially, but where they cannot observe each other's strategic channel choices. For the sequential case, we find that the sequence of entry can have tremendous impact on the two firms'profits; whereas in some cases, the first mover can achieve substantially higher profits, we find that when the two markets are of sufficiently different size and only loosely related, a firm with a competitive advantage might be better off as a follower. Interestingly, our results suggest that, when the markets are of rather similar size, both firms are better off if they enter the industry sequentially. In those cases, the first entrant has incentive to reveal its planned channel strategies, and the follower has incentive to seek out and consider this information. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

5.
For most firms, especially the small‐ and medium‐sized ones, the operational decisions are affected by their internal capital and ability to obtain external capital. However, the majority of the literature on dynamic inventory control ignores the firm's financial status and financing issues. An important question that arises is: what are the optimal inventory and financing policies for firms with limited internal capital and limited access to external capital? In this article, we study a dynamic inventory control problem where a capital‐constrained firm periodically purchases a product from a supplier and sells it to a market with random demands. In each period, the firm can use its own capital and/or borrow a short‐term loan to purchase the product, with the interest rate being nondecreasing in the loan size. The objective is to maximize the firm's expected terminal wealth at the end of the planning horizon. We show that the optimal inventory policy in each period is an equity‐level‐dependent base‐stock policy, where the equity level is the sum of the firm's capital level and the value of its on‐hand inventory evaluated at the purchasing cost; and the structure of the optimal policy can be characterized by four intervals of the equity level. Our results shed light on the dynamic inventory control for firms with limited capital and short‐term financing capabilities.Copyright © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 184–201, 2014  相似文献   

6.
In this article, we explore when firms have an incentive to hide (or reveal) their capacity information. We consider two firms that aim to maximize profits over time and face limited capacity. One or both of the firms have private information on their own capacity levels, and they update their beliefs about their rival's capacity based on their observation of the other firm's output. We focus on credible revelation mechanisms—a firm may signal its capacity through overproduction, compared to its myopic production levels. We characterize conditions when high‐capacity firms may have the incentive and capability to signal their capacity levels by overproduction. We show that prior beliefs about capacity play a crucial, and surprisingly complex, role on whether the firm would prefer to reveal its capacity or not. A surprising result is that, despite the fact that it may be best for the high‐capacity firm to overproduce to reveal its capacity when capacity information is private, it may end up with more profits than if all capacity information were public knowledge in the first place. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

7.
The quick response (QR) system that can cope with demand volatility by shortening lead time has been well studied in the literature. Much of the existing literature assumes implicitly or explicitly that the manufacturers under QR can always meet the demand because the production capacity is always sufficient. However, when the order comes with a short lead time under QR, availability of the manufacturer's production capacity is not guaranteed. This motivates us to explore QR in supply chains with stochastic production capacity. Specifically, we study QR in a two-echelon supply chain with Bayesian demand information updating. We consider the situation where the manufacturer's production capacity under QR is uncertain. We first explore how stochastic production capacity affects supply chain decisions and QR implementation. We then incorporate the manufacturer's ability to expand capacity into the model. We explore how the manufacturer determines the optimal capacity expansion decision, and the value of such an ability to the supply chain and its agents. Finally, we extend the model to the two-stage two-ordering case and derive the optimal ordering policy by dynamic programming. We compare the single-ordering and two-ordering cases to generate additional managerial insights about how ordering flexibility affects QR when production capacity is stochastic. We also explore the transparent supply chain and find that our main results still hold.  相似文献   

8.
A firm making quantity decision under uncertainty loses profit if its private information is leaked to competitors. Outsourcing increases this risk as a third party supplier may leak information for its own benefit. The firm may choose to conceal information from the competitors by entering in a confidentiality agreement with the supplier. This, however, diminishes the firm's ability to dampen competition by signaling a higher quantity commitment. We examine this trade‐off in a stylized supply chain in which two firms, endowed with private demand information, order sequentially from a common supplier, and engage in differentiated quantity competition. In our model, the supplier can set different wholesale prices for firms, and the second‐mover firm could be better informed. Contrary to what is expected, information concealment is not always beneficial to the first mover. We characterize conditions under which the first mover firm will not prefer concealing information. We show that this depends on the relative informativeness of the second mover and is moderated by competition intensity. We examine the supplier's incentive in participating in information concealment, and develop a contract that enables it for wider set of parameter values. We extend our analysis to examine firms' incentive to improve information. © 2014 Wiley Periodicals, Inc. 62:1–15, 2015  相似文献   

9.
This article investigates the firms' optimal quality information disclosure strategies in a supply chain, wherein the supplier may encroach into the retail channel to sell products directly to end consumers. We consider two disclosure formats, namely, retailer disclosure (R-C) and supplier disclosure (S-C), and examine the optimal disclosure format from each firm's perspective. We show that either firm prefers to delegate the disclosure option to its partner when the supplier cannot encroach. However, the threat of supplier encroachment dramatically alters the firm's preference of disclosure. The supplier may prefer the S-C format to the R-C format when the entry cost is low and the disclosure cost is high to achieve a higher quality information transparency. Meanwhile, the retailer may prefer the R-C format to the S-C format when the entry cost is intermediate to deter the possible encroachment of the supplier. In this sense, the firms' preferences of disclosure format can be aligned due to the threat of supplier encroachment. The consumer surplus is always higher under the S-C format while either disclosure format can lead to a higher social welfare. We also consider an alternative scenario under which the supplier encroaches after the product quality information is disclosed. An interesting observation appears that the supplier may encroach when the product quality is low but foregoes encroachment when the product quality gets higher.  相似文献   

10.
“Evergreening” is a strategy wherein an innovative pharmaceutical firm introduces an upgrade of its current product when the patent on this product expires. The upgrade is introduced with a new patent and is designed to counter competition from generic manufacturers that seek to imitate the firm's existing product. However, this process is fraught with uncertainty because the upgrade is subject to stringent guidelines and faces approval risk. Thus, an incumbent firm has to make an upfront production capacity investment without clarity on whether the upgrade will reach the market. This uncertainty may also affect the capacity investment of a competing manufacturer who introduces a generic version of the incumbent's existing product but whose market demand depends on the success or failure of the upgrade. We analyze a game where capacity investment occurs before uncertainty resolution and firms compete on prices thereafter. Capacity considerations that arise due to demand uncertainty introduce new factors into the evergreening decision. Equilibrium analysis reveals that the upgrade's estimated approval probability needs to exceed a threshold for the incumbent to invest in evergreening. This threshold for evergreening increases as the intensity of competition in the generic market increases. If evergreening is optimal, the incumbent's capacity investment is either decreasing or nonmonotonic with respect to low end market competition depending on whether the level of product improvement in the upgrade is low or high. If the entrant faces a capacity constraint, then the probability threshold for evergreening is higher than the case where the entrant is not capacity constrained. Finally, by incorporating the risk‐return trade‐off that the incumbent faces in terms of the level of product improvement versus the upgrade success probability, we can characterize policy for a regulator. We show that the introduction of capacity considerations may maximize market coverage and/or social surplus at incremental levels of product improvement in the upgrade. This is contrary to the prevalent view of regulators who seek to curtail evergreening involving incremental product improvement. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 71–89, 2016  相似文献   

11.
Optimal operating policies and corresponding managerial insight are developed for the decision problem of coordinating supply and demand when (i) both supply and demand can be influenced by the decision maker and (ii) learning is pursued. In particular, we determine optimal stocking and pricing policies over time when a given market parameter of the demand process, though fixed, initially is unknown. Because of the initially unknown market parameter, the decision maker begins the problem horizon with a subjective probability distribution associated with demand. Learning occurs as the firm monitors the market's response to its decisions and then updates its characterization of the demand function. Of primary interest is the effect of censored data since a firm's observations often are restricted to sales. We find that the first‐period optimal selling price increases with the length of the problem horizon. However, for a given problem horizon, prices can rise or fall over time, depending on how the scale parameter influences demand. Further results include the characterization of the optimal stocking quantity decision and a computationally viable algorithm. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 303–325, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10013  相似文献   

12.
When facing uncertain demand, several firms may consider pooling their inventories leading to the emergence of two key contractual issues. How much should each produce or purchase for inventory purposes? How should inventory be allocated when shortages occur to some of the firms? Previously, if the allocations issue was considered, it was undertaken through evaluation of the consequences of an arbitrary priority scheme. We consider both these issues within a Nash bargaining solution (NBS) cooperative framework. The firms may not be risk neutral, hence a nontransferable utility bargaining game is defined. Thus the physical pooling mechanism itself must benefit the firms, even without any monetary transfers. The firms may be asymmetric in the sense of having different unit production costs and unit revenues. Our assumption with respect to shortage allocation is that a firm not suffering from a shortfall, will not be affected by any of the other firms' shortages. For two risk neutral firms, the NBS is shown to award priority on all inventory produced to the firm with higher ratio of unit revenue to unit production cost. Nevertheless, the arrangement is also beneficial for the other firm contributing to the total production. We provide examples of Uniform and Bernoulli demand distributions, for which the problem can be solved analytically. For firms with constant absolute risk aversion, the agreement may not award priority to any firm. Analytically solvable examples allow additional insights, e.g. that higher risk aversion can, for some problem parameters, cause an increase in the sum of quantities produced, which is not the case in a single newsvendor setting. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

13.
We develop a simple, approximately optimal solution to a model with Erlang lead time and deterministic demand. The method is robust to misspecification of the lead time and has good accuracy. We compare our approximate solution to the optimal for the case where we have prior information on the lead‐time distribution, and another where we have no information, except for computer‐generated sample data. It turns out that our solution is as easy as the EOQ's, with an accuracy rate of 99.41% when prior information on the lead‐time distribution is available and 97.54–99.09% when only computer‐generated sample information is available. Apart from supplying the inventory practitioner with an easy heuristic, we gain insights into the efficacy of stochastic lead time models and how these could be used to find the cost and a near‐optimal policy for the general model, where both demand rate and lead time are stochastic. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

14.
We study the optimal contracting problem between two firms collaborating on capacity investment with information asymmetry. Without a contract, system efficiency is lost due to the profit‐margin differentials among the firms, demand uncertainty, and information asymmetry. With information asymmetry, we demonstrate that the optimal capacity level is characterized by a newsvendor formula with an upward‐adjusted capacity investment cost, and no first‐best solution can be achieved. Our analysis shows that system efficiency can always be improved by the optimal contract and the improvement in system efficience is due to two factors. While the optimal contract may bring the system's capacity level closer to the first‐best capacity level, it prevents the higher‐margin firm from overinvesting and aligns the capacity‐investment decisions of the two firms. Our analysis of a special case demonstrates that, under some circumstances, both firms can benefit from the principal having better information about the agent's costs. © 2007 Wiley Periodicals, Inc. Naval Research Logistics 54:, 2007  相似文献   

15.
In this paper, we extend the results of Ferguson M. Naval Research Logistics 8 . on an end‐product manufacturer's choice of when to commit to an order quantity from its parts supplier. During the supplier's lead‐time, information arrives about end‐product demand. This information reduces some of the forecast uncertainty. While the supplier must choose its production quantity of parts based on the original forecast, the manufacturer can wait to place its order from the supplier after observing the information update. We find that a manufacturer is sometimes better off with a contract requiring an early commitment to its order quantity, before the supplier commits resources. On the other hand, the supplier sometimes prefers a delayed commitment. The preferences depend upon the amount of demand uncertainty resolved by the information as well as which member of the supply chain sets the exchange price. We also show conditions where demand information updating is detrimental to both the manufacturer and the supplier. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

16.
We consider a firm which faces a Poisson customer demand and uses a base‐stock policy to replenish its inventories from an outside supplier with a fixed lead time. The firm can use a preorder strategy which allows the customers to place their orders before their actual need. The time from a customer's order until the date a product is actually needed is called commitment lead time. The firm pays a commitment cost which is strictly increasing and convex in the length of the commitment lead time. For such a system, we prove the optimality of bang‐bang and all‐or‐nothing policies for the commitment lead time and the base‐stock policy, respectively. We study the case where the commitment cost is linear in the length of the commitment lead time in detail. We show that there exists a unit commitment cost threshold which dictates the optimality of either a buy‐to‐order (BTO) or a buy‐to‐stock strategy. The unit commitment cost threshold is increasing in the unit holding and backordering costs and decreasing in the mean lead time demand. We determine the conditions on the unit commitment cost for profitability of the BTO strategy and study the case with a compound Poisson customer demand.  相似文献   

17.
In this paper a model is developed for determining optimal strategies for two competing firms which are about to submit sealed tender bids on K contracts. A contract calls for the winning firm to supply a specific amount of a commodity at the bid price. By the same token, the production of that commodity involves various amounts of N different resources which each firm possesses in limited quantities. It is assumed that the same two firms bid on each contract and that each wants to determine a bidding strategy which will maximize its profits subject to the constraint that the firm must be able to produce the amount of products required to meet the contracts it wins. This bidding model is formulated as a sequence of bimatrix games coupled together by N resource constraints. Since the firms' strategy spaces are intertwined, the usual quadratic programming methods cannot be used to determine equilibrium strategies. In lieu of this a number of theorems are given which partially characterize such strategies. For the single resource problem techniques are developed for determining equilibrium strategies. In the multiple resource problem similar methods yield subequilibrium strategies or strategies that are equilibrium from at least one firm's point of view.  相似文献   

18.
Supplier diversification, contingent sourcing, and demand switching (whereby a firm shifts customers to a different product if their preferred product is unavailable), are key building blocks of a disruption‐management strategy for firms that sell multiple products over a single season. In this article, we evaluate 12 possible disruption‐management strategies (combinations of the basic building‐block tactics) in the context of a two‐product newsvendor. We investigate the influence of nine attributes of the firm, its supplier(s), and its products on the firs preference for the various strategies. These attributes include supplier reliability, supplier failure correlation, payment responsibility in the event of a supply failure, product contribution margin, product substitutability, demand uncertainties and correlation, and the decision makes risk aversion. Our results show that contingent sourcing is preferred to supplier diversification as the supply risk (failure probability) increases, but diversification is preferred to contingent sourcing as the demand risk (demand uncertainty) increases. We find that demand switching is not effective at managing supply risk if the products are sourced from the same set of suppliers. Demand switching is effective at managing demand risk and so can be preferred to the other tactics if supply risk is low. Risk aversion makes contingent sourcing preferable over a wider set of supply and demand‐risk combinations. We also find a two‐tactic strategy provides almost the same benefit as a three‐tactic strategy for most reasonable supply and demand‐risk combinations. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

19.
In this paper we study a capacity allocation problem for two firms, each of which has a local store and an online store. Customers may shift among the stores upon encountering a stockout. One question facing each firm is how to allocate its finite capacity (i.e., inventory) between its local and online stores. One firm's allocation affects the decision of the rival, thereby creating a strategic interaction. We consider two scenarios of a single‐product single‐period model and derive corresponding existence and stability conditions for a Nash equilibrium. We then conduct sensitivity analysis of the equilibrium solution with respect to price and cost parameters. We also prove the existence of a Nash equilibrium for a generalized model in which each firm has multiple local stores and a single online store. Finally, we extend the results to a multi‐period model in which each firm decides its total capacity and allocates this capacity between its local and online stores. A myopic solution is derived and shown to be a Nash equilibrium solution of a corresponding “sequential game.” © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

20.
This article examines a problem faced by a firm procuring a material input or good from a set of suppliers. The cost to procure the material from any given supplier is concave in the amount ordered from the supplier, up to a supplier‐specific capacity limit. This NP‐hard problem is further complicated by the observation that capacities are often uncertain in practice, due for instance to production shortages at the suppliers, or competition from other firms. We accommodate this uncertainty in a worst‐case (robust) fashion by modeling an adversarial entity (which we call the “follower”) with a limited procurement budget. The follower reduces supplier capacity to maximize the minimum cost required for our firm to procure its required goods. To guard against uncertainty, the firm can “protect” any supplier at a cost (e.g., by signing a contract with the supplier that guarantees supply availability, or investing in machine upgrades that guarantee the supplier's ability to produce goods at a desired level), ensuring that the anticipated capacity of that supplier will indeed be available. The problem we consider is thus a three‐stage game in which the firm first chooses which suppliers' capacities to protect, the follower acts next to reduce capacity from unprotected suppliers, and the firm then satisfies its demand using the remaining capacity. We formulate a three‐stage mixed‐integer program that is well‐suited to decomposition techniques and develop an effective cutting‐plane algorithm for its solution. The corresponding algorithmic approach solves a sequence of scaled and relaxed problem instances, which enables solving problems having much larger data values when compared to standard techniques. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号