首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Products with short life cycles are becoming increasingly common in many industries, such as the personal computer (PC) and mobile phone industries. Traditional forecasting methods and inventory policies can be inappropriate for forecasting demand and managing inventory for a product with a short life cycle because they usually do not take into account the characteristics of the product life cycle. This can result in inaccurate forecasts, high inventory cost, and low service levels. Besides, many forecasting methods require a significant demand history, which is available only after the product has been sold for some time. In this paper, we present an adaptive forecasting algorithm with two characteristics. First, it uses structural knowledge on the product life cycle to model the demand. Second, it combines knowledge on the demand that is available prior to the launch of the product with actual demand data that become available after the introduction of the product to generate and update demand forecasts. Based on the forecasting algorithm, we develop an optimal inventory policy. Since the optimal inventory policy is computationally expensive, we propose three heuristics and show in a numerical study that one of the heuristics generates near‐optimal solutions. The evaluation of our approach is based on demand data from a leading PC manufacturer in the United States, where the forecasting algorithm has been implemented. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

2.
Consider a supplier offering a product to several potential demand sources, each with a unique revenue, size, and probability that it will materialize. Given a long procurement lead time, the supplier must choose the orders to pursue and the total quantity to procure prior to the selling season. We model this as a selective newsvendor problem of maximizing profits where the total (random) demand is given by the set of pursued orders. Given that the dimensionality of a mixed‐integer linear programming formulation of the problem increases exponentially with the number of potential orders, we develop both a tailored exact algorithm based on the L‐shaped method for two‐stage stochastic programming as well as a heuristic method. We also extend our solution approach to account for piecewise‐linear cost and revenue functions as well as a multiperiod setting. Extensive experimentation indicates that our exact approach rapidly finds optimal solutions with three times as many orders as a state‐of‐the‐art commercial solver. In addition, our heuristic approach provides average gaps of less than 1% for the largest problems that can be solved exactly. Observing that the gaps decrease as problem size grows, we expect the heuristic approach to work well for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008  相似文献   

3.
This paper considers a discrete time, single item production/inventory system with random period demands. Inventory levels are reviewed periodically and managed using a base‐stock policy. Replenishment orders are placed with the production system which is capacitated in the sense that there is a single server that sequentially processes the items one at a time with stochastic unit processing times. In this setting the variability in demand determines the arrival pattern of production orders at the queue, influencing supply lead times. In addition, the inventory behavior is impacted by the correlation between demand and lead times: a large demand size corresponds to a long lead time, depleting the inventory longer. The contribution of this paper is threefold. First, we present an exact procedure based on matrix‐analytic techniques for computing the replenishment lead time distribution given an arbitrary discrete demand distribution. Second, we numerically characterize the distribution of inventory levels, and various other performance measures such as fill rate, base‐stock levels and optimal safety stocks, taking the correlation between demand and lead times into account. Third, we develop an algorithm to fit the first two moments of the demand and service time distribution to a discrete phase‐type distribution with a minimal number of phases. This provides a practical tool to analyze the effect of demand variability, as measured by its coefficient of variation, on system performance. We also show that our model is more appropriate than some existing models of capacitated systems in discrete time. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

4.
A classical and important problem in stochastic inventory theory is to determine the order quantity (Q) and the reorder level (r) to minimize inventory holding and backorder costs subject to a service constraint that the fill rate, i.e., the fraction of demand satisfied by inventory in stock, is at least equal to a desired value. This problem is often hard to solve because the fill rate constraint is not convex in (Q, r) unless additional assumptions are made about the distribution of demand during the lead‐time. As a consequence, there are no known algorithms, other than exhaustive search, that are available for solving this problem in its full generality. Our paper derives the first known bounds to the fill‐rate constrained (Q, r) inventory problem. We derive upper and lower bounds for the optimal values of the order quantity and the reorder level for this problem that are independent of the distribution of demand during the lead time and its variance. We show that the classical economic order quantity is a lower bound on the optimal ordering quantity. We present an efficient solution procedure that exploits these bounds and has a guaranteed bound on the error. When the Lagrangian of the fill rate constraint is convex or when the fill rate constraint does not exist, our bounds can be used to enhance the efficiency of existing algorithms. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 635–656, 2000  相似文献   

5.
The quick response (QR) system that can cope with demand volatility by shortening lead time has been well studied in the literature. Much of the existing literature assumes implicitly or explicitly that the manufacturers under QR can always meet the demand because the production capacity is always sufficient. However, when the order comes with a short lead time under QR, availability of the manufacturer's production capacity is not guaranteed. This motivates us to explore QR in supply chains with stochastic production capacity. Specifically, we study QR in a two-echelon supply chain with Bayesian demand information updating. We consider the situation where the manufacturer's production capacity under QR is uncertain. We first explore how stochastic production capacity affects supply chain decisions and QR implementation. We then incorporate the manufacturer's ability to expand capacity into the model. We explore how the manufacturer determines the optimal capacity expansion decision, and the value of such an ability to the supply chain and its agents. Finally, we extend the model to the two-stage two-ordering case and derive the optimal ordering policy by dynamic programming. We compare the single-ordering and two-ordering cases to generate additional managerial insights about how ordering flexibility affects QR when production capacity is stochastic. We also explore the transparent supply chain and find that our main results still hold.  相似文献   

6.
We study an (R, s, S) inventory control policy with stochastic demand, lost sales, zero lead‐time and a target service level to be satisfied. The system is modeled as a discrete time Markov chain for which we present a novel approach to derive exact closed‐form solutions for the limiting distribution of the on‐hand inventory level at the end of a review period, given the reorder level (s) and order‐up‐to level (S). We then establish a relationship between the limiting distributions for adjacent values of the reorder point that is used in an efficient recursive algorithm to determine the optimal parameter values of the (R, s, S) replenishment policy. The algorithm is easy to implement and entails less effort than solving the steady‐state equations for the corresponding Markov model. Point‐of‐use hospital inventory systems share the essential characteristics of the inventory system we model, and a case study using real data from such a system shows that with our approach, optimal policies with significant savings in inventory management effort are easily obtained for a large family of items.  相似文献   

7.
For a service provider facing stochastic demand growth, expansion lead times and economies of scale complicate the expansion timing and sizing decisions. We formulate a model to minimize the infinite horizon expected discounted expansion cost under a service‐level constraint. The service level is defined as the proportion of demand over an expansion cycle that is satisfied by available capacity. For demand that follows a geometric Brownian motion process, we impose a stationary policy under which expansions are triggered by a fixed ratio of demand to the capacity position, i.e., the capacity that will be available when any current expansion project is completed, and each expansion increases capacity by the same proportion. The risk of capacity shortage during a cycle is estimated analytically using the value of an up‐and‐out partial barrier call option. A cutting plane procedure identifies the optimal values of the two expansion policy parameters simultaneously. Numerical instances illustrate that if demand grows slowly with low volatility and the expansion lead times are short, then it is optimal to delay the start of expansion beyond when demand exceeds the capacity position. Delays in initiating expansions are coupled with larger expansion sizes. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

8.
We consider two specially structured assemble‐to‐order (ATO) systems—the N‐ and W‐systems—under continuous review, stochastic demand, and nonidentical component replenishment leadtimes. Using a hybrid approach that combines sample‐path analysis, linear programming, and the tower property of conditional expectation, we characterize the optimal component replenishment policy and common‐component allocation rule, present comparative statics of the optimal policy parameters, and show that some commonly used heuristic policies can lead to significant optimality loss. The optimality results require certain symmetry in the cost parameters. In the absence of this symmetry, we show that, for systems with high demand volume, the asymptotically optimal policy has essentially the same structure; otherwise, the optimal policies have no clear structure. For these latter systems, we develop heuristic policies and show their effectiveness. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 62: 617–645, 2015  相似文献   

9.
We consider a supplier with finite production capacity and stochastic production times. Customers provide advance demand information (ADI) to the supplier by announcing orders ahead of their due dates. However, this information is not perfect, and customers may request an order be fulfilled prior to or later than the expected due date. Customers update the status of their orders, but the time between consecutive updates is random. We formulate the production‐control problem as a continuous‐time Markov decision process and prove there is an optimal state‐dependent base‐stock policy, where the base‐stock levels depend upon the numbers of orders at various stages of update. In addition, we derive results on the sensitivity of the state‐dependent base‐stock levels to the number of orders in each stage of update. In a numerical study, we examine the benefit of ADI, and find that it is most valuable to the supplier when the time between updates is moderate. We also consider the impact of holding and backorder costs, numbers of updates, and the fraction of customers that provide ADI. In addition, we find that while ADI is always beneficial to the supplier, this may not be the case for the customers who provide the ADI. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

10.
We consider the Inventory‐Routing Problem (IRP) where n geographically dispersed retailers must be supplied by a central facility. The retailers experience demand for the product at a deterministic rate, and incur holding costs for keeping inventory. Distribution is performed by a fleet of capacitated vehicles. The objective is to minimize the average transportation and inventory costs per unit time over the infinite horizon. We focus on the set of Fixed Partition Policies (FPP). In an FPP, the retailers are partitioned into disjoint and collectively exhaustive sets. Each set of retailers is served independently of the others and at its optimal replenishment rate. Previous research has measured the effectiveness of an FPP solution relative to a lower bound over all policies. We propose an additional measure that is relative to the optimal FPP. In this paper we construct a polynomial‐time partitioning scheme that is shown to yield an FPP whose cost is asymptotically within 1.5% + ? of the cost of an optimal FPP, for arbitrary ? > 0. In addition, in some cases, our polynomial‐time scheme yields an FPP whose cost is asymptotically within 1.5% + ? of the minimal policy's cost (over all feasible policies). © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

11.
There has been a dramatic increase over the past decade in the number of firms that source finished product from overseas. Although this has reduced procurement costs, it has increased supply risk; procurement lead times are longer and are often unreliable. In deciding when and how much to order, firms must consider the lead time risk and the demand risk, i.e., the accuracy of their demand forecast. To improve the accuracy of its demand forecast, a firm may update its forecast as the selling season approaches. In this article we consider both forecast updating and lead time uncertainty. We characterize the firm's optimal procurement policy, and we prove that, with multiplicative forecast revisions, the firm's optimal procurement time is independent of the demand forecast evolution but that the optimal procurement quantity is not. This leads to a number of important managerial insights into the firm's planning process. We show that the firm becomes less sensitive to lead time variability as the forecast updating process becomes more efficient. Interestingly, a forecast‐updating firm might procure earlier than a firm with no forecast updating. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

12.
We examine the behavior of a manufacturer and a retailer in a decentralized supply chain under price‐dependent, stochastic demand. We model a retail fixed markup (RFM) policy, which can arise as a form of vertically restrictive pricing in a supply chain, and we examine its effect on supply chain performance. We prove the existence of the optimal pricing and replenishment policies when demand has a linear additive form and the distribution of the uncertainty component has a nondecreasing failure rate. We numerically compare the relative performance of RFM to a price‐only contract and we find that RFM results in greater profit for the supply chain than the price‐only contract in a variety of scenarios. We find that RFM can lead to Pareto‐improving solutions where both the supplier and the retailer earn more profit than under a price‐only contract. Finally, we compare RFM to a buyback contract and explore the implications of allowing the fixed markup parameter to be endogenous to the model. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006.  相似文献   

13.
We present a stochastic programming approach to capacity planning under demand uncertainty in semiconductor manufacturing. Given multiple demand scenarios together with associated probabilities, our aim is to identify a set of tools that is a good compromise for all these scenarios. More precisely, we formulate a mixed‐integer program in which expected value of the unmet demand is minimized subject to capacity and budget constraints. This is a difficult two‐stage stochastic mixed‐integer program which cannot be solved to optimality in a reasonable amount of time. We instead propose a heuristic that can produce near‐optimal solutions. Our heuristic strengthens the linear programming relaxation of the formulation with cutting planes and performs limited enumeration. Analyses of the results in some real‐life situations are also presented. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

14.
An important aspect of supply chain management is dealing with demand and supply uncertainty. The uncertainty of future supply can be reduced if a company is able to obtain advance capacity information (ACI) about future supply/production capacity availability from its supplier. We address a periodic‐review inventory system under stochastic demand and stochastic limited supply, for which ACI is available. We show that the optimal ordering policy is a state‐dependent base‐stock policy characterized by a base‐stock level that is a function of ACI. We establish a link with inventory models that use advance demand information (ADI) by developing a capacitated inventory system with ADI, and we show that equivalence can only be set under a very specific and restrictive assumption, implying that ADI insights will not necessarily hold in the ACI environment. Our numerical results reveal several managerial insights. In particular, we show that ACI is most beneficial when there is sufficient flexibility to react to anticipated demand and supply capacity mismatches. Further, most of the benefits can be achieved with only limited future visibility. We also show that the system parameters affecting the value of ACI interact in a complex way and therefore need to be considered in an integrated manner. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

15.
A well‐studied problem in airline revenue management is the optimal allocation of seat inventory among different fare‐classes, given a capacity for the flight and a demand distribution for each class. In practice, capacity on a flight does not have to be fixed; airlines can exercise some flexibility on the supply side by swapping aircraft of different capacities between flights as partial booking information is gathered. This provides the airline with the capability to more effectively match their supply and demand. In this paper, we study the seat inventory control problem considering the aircraft swapping option. For theoretical and practical purposes, we restrict our attention to the class of booking limit policies. Our analytical results demonstrate that booking limits considering the swapping option can be considerably different from those under fixed capacity. We also show that principles on the relationship between the optimal booking limits and demand characteristics (size and risk) developed for the fixed‐capacity problem no longer hold when swapping is an option. We develop new principles and insights on how demand characteristics affect the optimal booking limits under the swapping possibility. We also develop an easy to implement heuristic for determining the booking limits under the swapping option and show, through a numerical study, that the heuristic generates revenues close to those under the optimal booking limits. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

16.
Consider a sequential dynamic pricing model where a seller sells a given stock to a random number of customers. Arriving one at a time, each customer will purchase one item if the product price is lower than her personal reservation price. The seller's objective is to post a potentially different price for each customer in order to maximize the expected total revenue. We formulate the seller's problem as a stochastic dynamic programming model, and develop an algorithm to compute the optimal policy. We then apply the results from this sequential dynamic pricing model to the case where customers arrive according to a continuous‐time point process. In particular, we derive tight bounds for the optimal expected revenue, and develop an asymptotically optimal heuristic policy. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

17.
This paper addresses optimal power allocation in a wireless communication network under uncertainty. The paper introduces a framework for optimal transmit power allocation in a wireless network where both the useful and interference coefficients are random. The new approach to power control is based on a stochastic programming formulation with probabilistic SIR constraints. This allows to state the power allocation problem as a convex optimization problem assuming normally or log‐normally distributed communication link coefficients. Numerical examples illustrate the performance of the optimal stochastic power allocation. A distributed algorithm for the decentralized solution of the stochastic power allocation problem is discussed. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

18.
This paper analyzes the simultaneous production of market‐specific products tailored to the needs of individual regions and a global product that could be sold in many regions. We assume that the global product costs more to manufacture, but allows the decision concerning the allocation of products to regions to be delayed until after the manufacturing process has been completed. We further assume that there is additional demand after the region allocation but prior to delivery, extending the two‐stage stochastic program with recourse to include additional stochastic demand after the recourse. This scenario arises, for example, when there is additional uncertainty during a delivery delay which might occur with transoceanic shipments. We develop conditions for optimality assuming a single build‐allocate‐deliver cycle and stochastic demand during both the build and deliver periods. The optimal policy calls for the simultaneous production of market‐specific and global products, even when the global product is substantially more costly than the market‐specific product. In addition, we develop bounds on the performance of the optimal policy for the multicycle problem. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 438–461, 2003  相似文献   

19.
This paper studies a scheduling problem arising in a beef distribution system where pallets of various types of beef products in the warehouse are first depalletized and then individual cases are loaded via conveyors to the trucks which deliver beef products to various customers. Given each customer's demand for each type of beef, the problem is to find a depalletizing and truck loading schedule that fills all the demands at a minimum total cost. We first show that the general problem where there are multiple trucks and each truck covers multiple customers is strongly NP‐hard. Then we propose polynomial‐time algorithms for the case where there are multiple trucks, each covering only one customer, and the case where there is only one truck covering multiple customers. We also develop an optimal dynamic programming algorithm and a heuristic for solving the general problem. By comparing to the optimal solutions generated by the dynamic programming algorithm, the heuristic is shown to be capable of generating near optimal solutions quickly. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

20.
This paper presents a statistical decision analysis of a one-stage linear programming problem with deterministic constraints and stochastic criterion function. Procedures for obtaining numerical results are given which are applicable to any problem having this general form. We begin by stating the statistical decision problems to be considered, and then discuss the expected value of perfect information and the expected value of sample information. In obtaining these quantities, use is made of the distribution of the optimal value of the linear programming problem with stochastic criterion function, and so we discuss Monte Carlo and numerical integration procedures for estimating the mean of this distribution. The case in which the random criterion vector has a multivariate Normal distribution is discussed separately, and more detailed methods are offered. We discuss dual problems, including some relationships of this work with other work in probabilistic linear programming. An example is given in Appendix A showing application of the methods to a sample problem. In Appendix B we consider the accuracy of a procedure for approximating the expected value of information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号