首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We consider the problem of designing a contract to maximize the supplier's profit in a one‐supplier–one‐buyer relationship for a short‐life‐cycle product. Demand for the finished product is stochastic and price‐sensitive, and only its probability distribution is known when the supply contract is written. When the supplier has complete information on the marginal cost of the buyer, we show that several simple contracts can induce the buyer to choose order quantity that attains the single firm profit maximizing solution, resulting in the maximum possible profit for the supplier. When the marginal cost of the buyer is private information, we show that it is no longer possible to achieve the single firm solution. In this case, the optimal order quantity is always smaller while the optimal sale price of the finished product is higher than the single firm solution. The supplier's profit is lowered while that of the buyer is improved. Moreover, a buyer who has a lower marginal cost will extract more profit from the supplier. Under the optimal contract, the supplier employs a cutoff level policy on the buyer's marginal cost to determine whether the buyer should be induced to sign the contract. We characterize the optimal cutoff level and show how it depends on the parameters of the problem. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 41–64, 2001  相似文献   

2.
Supplier diversification, contingent sourcing, and demand switching (whereby a firm shifts customers to a different product if their preferred product is unavailable), are key building blocks of a disruption‐management strategy for firms that sell multiple products over a single season. In this article, we evaluate 12 possible disruption‐management strategies (combinations of the basic building‐block tactics) in the context of a two‐product newsvendor. We investigate the influence of nine attributes of the firm, its supplier(s), and its products on the firs preference for the various strategies. These attributes include supplier reliability, supplier failure correlation, payment responsibility in the event of a supply failure, product contribution margin, product substitutability, demand uncertainties and correlation, and the decision makes risk aversion. Our results show that contingent sourcing is preferred to supplier diversification as the supply risk (failure probability) increases, but diversification is preferred to contingent sourcing as the demand risk (demand uncertainty) increases. We find that demand switching is not effective at managing supply risk if the products are sourced from the same set of suppliers. Demand switching is effective at managing demand risk and so can be preferred to the other tactics if supply risk is low. Risk aversion makes contingent sourcing preferable over a wider set of supply and demand‐risk combinations. We also find a two‐tactic strategy provides almost the same benefit as a three‐tactic strategy for most reasonable supply and demand‐risk combinations. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

3.
Supply chains are often characterized by the presence of a dominant buyer purchasing from a supplier with limited capacity. We study such a situation where a single supplier sells capacity to an established and more powerful buyer and also to a relatively less powerful buyer. The more powerful buyer enjoys the first right to book her capacity requirements at supplier's end, and then the common supplier fulfills the requirement of the less powerful buyer. We find that when the supplier's capacity is either too low (below the lower threshold) or too high (above the higher threshold), there is no excess procurement as compared to the case when supplier has infinite capacity. When the supplier's capacity is between these two thresholds, the more powerful buyer purchases an excess amount in comparison to the infinite capacity case.  相似文献   

4.
We consider a supplier–customer relationship where the customer faces a typical Newsvendor problem of determining perishable capacity to meet uncertain demand. The customer outsources a critical, demand‐enhancing service to an outside supplier, who receives a fixed share of the revenue from the customer. Given such a linear sharing contract, the customer chooses capacity and the service supplier chooses service effort level before demand is realized. We consider the two cases when these decisions are made simultaneously (simultaneous game) or sequentially (sequential game). For each game, we analyze how the equilibrium solutions vary with the parameters of the problem. We show that in the equilibrium, it is possible that either the customer's capacity increases or the service supplier's effort level decreases when the supplier receives a larger share of the revenue. We also show that given the same sharing contract, the sequential game always induces a higher capacity and more effort. For the case of additive effort effect and uniform demand distribution, we consider the customer's problem of designing the optimal contract with or without a fixed payment in the contract, and obtain sensitivity results on how the optimal contract depends on the problem parameters. For the case of fixed payment, it is optimal to allocate more revenue to the supplier to induce more service effort when the profit margin is higher, the cost of effort is lower, effort is more effective in stimulating demand, the variability of demand is smaller or the supplier makes the first move in the sequential game. For the case of no fixed payment, however, it is optimal to allocate more revenue to the supplier when the variability of demand is larger or its mean is smaller. Numerical examples are analyzed to validate the sensitivity results for the case of normal demand distribution and to provide more managerial insights. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

5.
A change order is frequently initiated by either the supplier or the buyer, especially when the contract is long‐term or when the contractual design is complex. In response to a change order, the buyer can enter a bargaining process to negotiate a new price. If the bargaining fails, she pays a cancellation fee (or penalty) and opens an auction. We call this process the sequential bargaining‐auction (BA). At the time of bargaining, the buyer is uncertain as to whether the bargained price is set to her advantage; indeed, she might, or might not, obtain a better price in the new auction. To overcome these difficulties, we propose a new change‐order‐handling mechanism by which the buyer has an option to change the contractual supplier after bargaining ends with a bargained price. We call this the option mechanism. By this mechanism, the privilege of selling products or services is transferred to a new supplier if the buyer exercises the option. To exercise the option, the buyer pays a prespecified cash payment, which we call the switch price, to the original supplier. If the option is not exercised, the bargained price remains in effect. When a switch price is proposed by the buyer, the supplier decides whether or not to accept it. If the supplier accepts it, the buyer opens an auction. The option is exercised when there is a winner in the auction. This article shows how, under the option mechanism, the optimal switch price and the optimal reserve price are determined. Compared to the sequential BA, both the buyer and the supplier benefit. Additionally, the option mechanism coordinates the supply chain consisting of the two parties. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 248–265, 2015  相似文献   

6.
We analyze strategic relationships between buyers and sellers in markets with switching costs and dynamic uncertainty by investigating the scenario wherein a representative buyer trades with two foreign sellers located in the same foreign country. We show that, under exchange rate uncertainty, switching costs may lead to switching equilibria where both sellers co‐exist in the market with the buyer, or no‐switching equilibria where either seller captures the market. The presence of exchange rate uncertainty facilitates competition by allowing the sellers to co‐exist in the market with the buyer. However, if the level of uncertainty is beyond a threshold, the only viable equilibria are those where one of the sellers captures the market. Further, depending on the level of exchange rate uncertainty and the sellers' variable costs, switching costs may either raise or lower the level of prices in long‐term contracts between the buyer and the sellers. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

7.
Collaborative procurement emerged as one of the many initiatives for achieving improved inter‐firm coordination and collaboration. In this article, we adopt a game‐theoretical approach to study the interaction between two firms who procure jointly, but produce independently and remain competitors in a product market characterized by price‐sensitive demand. We study the underlying economics behind collaborative procurement, examine the effects of collaboration on buyer and supplier profitability, and derive conditions under which collaboration is beneficial to each participant. We find that a necessary and sufficient condition for a buyer to collaborate is to increase its sales. We identify the conditions that lead equal size buyers (i.e., consortia consisting of only large buyers or only small buyers) versus different size buyers to collaborate. We also determine the conditions that make collaboration profitable for the supplier, and show that rather than selling a large quantity to a single buyer, the supplier prefers to sell to multiple buyers in smaller quantities. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

8.
We consider a make‐to‐order manufacturer facing random demand from two classes of customers. We develop an integrated model for reserving capacity in anticipation of future order arrivals from high priority customers and setting due dates for incoming orders. Our research exhibits two distinct features: (1) we explicitly model the manufacturer's uncertainty about the customers' due date preferences for future orders; and (2) we utilize a service level measure for reserving capacity rather than estimating short and long term implications of due date quoting with a penalty cost function. We identify an interesting effect (“t‐pooling”) that arises when the (partial) knowledge of customer due date preferences is utilized in making capacity reservation and order allocation decisions. We characterize the relationship between the customer due date preferences and the required reservation quantities and show that not considering the t‐pooling effect (as done in traditional capacity and inventory rationing literature) leads to excessive capacity reservations. Numerical analyses are conducted to investigate the behavior and performance of our capacity reservation and due date quoting approach in a dynamic setting with multiple planning horizons and roll‐overs. One interesting and seemingly counterintuitive finding of our analyses is that under certain conditions reserving capacity for high priority customers not only improves high priority fulfillment, but also increases the overall system fill rate. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

9.
Global sourcing has made quality management a more challenging task, and supplier certification has emerged as a solution to overcome suppliers' informational advantage about their product quality. This article analyzes the impact of certification standards on the supplier's investment in quality, when a buyer outsources the production process. Based on our results, deterministic certification may lead to under‐investment in quality improvement technology for efficient suppliers, thereby leading to potential supply chain inefficiency. The introduction of noisy certification may alleviate this under‐investment problem, when the cost of information asymmetry is high. While allowing noisy certification always empowers the buyer to offer a menu to screen among heterogeneous suppliers, the buyer may optimally choose only a limited number of certification standards. Our analysis provides a clear‐cut prediction of the types of certifiers the buyer should use for heterogeneous suppliers, and we identify the conditions under which the supplier benefits from noisy certification. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

10.
This article examines a problem faced by a firm procuring a material input or good from a set of suppliers. The cost to procure the material from any given supplier is concave in the amount ordered from the supplier, up to a supplier‐specific capacity limit. This NP‐hard problem is further complicated by the observation that capacities are often uncertain in practice, due for instance to production shortages at the suppliers, or competition from other firms. We accommodate this uncertainty in a worst‐case (robust) fashion by modeling an adversarial entity (which we call the “follower”) with a limited procurement budget. The follower reduces supplier capacity to maximize the minimum cost required for our firm to procure its required goods. To guard against uncertainty, the firm can “protect” any supplier at a cost (e.g., by signing a contract with the supplier that guarantees supply availability, or investing in machine upgrades that guarantee the supplier's ability to produce goods at a desired level), ensuring that the anticipated capacity of that supplier will indeed be available. The problem we consider is thus a three‐stage game in which the firm first chooses which suppliers' capacities to protect, the follower acts next to reduce capacity from unprotected suppliers, and the firm then satisfies its demand using the remaining capacity. We formulate a three‐stage mixed‐integer program that is well‐suited to decomposition techniques and develop an effective cutting‐plane algorithm for its solution. The corresponding algorithmic approach solves a sequence of scaled and relaxed problem instances, which enables solving problems having much larger data values when compared to standard techniques. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

11.
Capacity planning decisions affect a significant portion of future revenue. In equipment intensive industries, these decisions usually need to be made in the presence of both highly volatile demand and long capacity installation lead times. For a multiple product case, we present a continuous‐time capacity planning model that addresses problems of realistic size and complexity found in current practice. Each product requires specific operations that can be performed by one or more tool groups. We consider a number of capacity allocation policies. We allow tool retirements in addition to purchases because the stochastic demand forecast for each product can be decreasing. We present a cluster‐based heuristic algorithm that can incorporate both variance reduction techniques from the simulation literature and the principles of a generalized maximum flow algorithm from the network optimization literature. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

12.
Although the quantity discount problem has been extensively studied in the realm of a single supplier and a single buyer, it is not well understood when a supplier has many different buyers. This paper presents an analysis of a supplier's quantity discount decision when there are many buyers with different demand and cost structures. A common discrete all‐unit quantity discount schedule with many break points is used. After formulating the model, we first analyze buyers' responses to a general discrete quantity discount schedule. This analysis establishes a framework for a supplier to formulate his quantity discount decision. Under this framework, the supplier's optimal quantity discount schedule can be formulated and solved by a simple non‐linear programming model. The applicability of the model is discussed with an application for a large U.S. distribution network. © 2002 John Wiley & Sons, Inc. Naval Research Logistics, 49: 46–59, 2002; DOI 10.1002/nav.1052  相似文献   

13.
We consider a supplier with finite production capacity and stochastic production times. Customers provide advance demand information (ADI) to the supplier by announcing orders ahead of their due dates. However, this information is not perfect, and customers may request an order be fulfilled prior to or later than the expected due date. Customers update the status of their orders, but the time between consecutive updates is random. We formulate the production‐control problem as a continuous‐time Markov decision process and prove there is an optimal state‐dependent base‐stock policy, where the base‐stock levels depend upon the numbers of orders at various stages of update. In addition, we derive results on the sensitivity of the state‐dependent base‐stock levels to the number of orders in each stage of update. In a numerical study, we examine the benefit of ADI, and find that it is most valuable to the supplier when the time between updates is moderate. We also consider the impact of holding and backorder costs, numbers of updates, and the fraction of customers that provide ADI. In addition, we find that while ADI is always beneficial to the supplier, this may not be the case for the customers who provide the ADI. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

14.
For a service provider facing stochastic demand growth, expansion lead times and economies of scale complicate the expansion timing and sizing decisions. We formulate a model to minimize the infinite horizon expected discounted expansion cost under a service‐level constraint. The service level is defined as the proportion of demand over an expansion cycle that is satisfied by available capacity. For demand that follows a geometric Brownian motion process, we impose a stationary policy under which expansions are triggered by a fixed ratio of demand to the capacity position, i.e., the capacity that will be available when any current expansion project is completed, and each expansion increases capacity by the same proportion. The risk of capacity shortage during a cycle is estimated analytically using the value of an up‐and‐out partial barrier call option. A cutting plane procedure identifies the optimal values of the two expansion policy parameters simultaneously. Numerical instances illustrate that if demand grows slowly with low volatility and the expansion lead times are short, then it is optimal to delay the start of expansion beyond when demand exceeds the capacity position. Delays in initiating expansions are coupled with larger expansion sizes. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

15.
Considering a supply chain with a supplier subject to yield uncertainty selling to a retailer facing stochastic demand, we find that commonly studied classical coordination contracts fail to coordinate both the supplier's production and the retailer's procurement decisions and achieve efficient performance. First, we study the vendor managed inventory (VMI) partnership. We find that a consignment VMI partnership coupled with a production cost subsidy achieves perfect coordination and a win‐win outcome; it is simple to implement and arbitrarily allocates total channel profit. The production cost subsidy optimally chosen through Nash bargaining analysis depends on the bargaining power of the supplier and the retailer. Further, motivated by the practice that sometimes the retailer and the supplier can arrange a “late order,” we also analyze the behavior of an advance‐purchase discount (APD) contract. We find that an APD with a revenue sharing contract can efficiently coordinate the supply chain as well as achieve flexible profit allocation. Finally, we explore which coordination contract works better for the supplier vs. the retailer. It is interesting to observe that Nash bargaining solutions for the two coordination contracts are equivalent. We further provide recommendations on the applications of these contracts. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 305–319, 2016  相似文献   

16.
We consider a distribution system consisting of a central warehouse and a group of retailers facing independent stochastic demand. The retailers replenish from the warehouse, and the warehouse from an outside supplier with ample supply. Time is continuous. Most previous studies on inventory control policies for this system have considered stock‐based batch‐ordering policies. We develop a time‐based joint‐replenishment policy in this study. Let the warehouse set up a basic replenishment interval. The retailers are replenished through the warehouse in intervals that are integer multiples of the basic replenishment interval. No inventory is carried at the warehouse. We provide an exact evaluation of the long‐term average system costs under the assumption that stock can be balanced among the retailers. The structural properties of the inventory system are characterized. We show that, although it is well known that stock‐based inventory control policies dominate time‐based inventory control policies at a single facility, this dominance does not hold for distribution systems with multiple retailers and stochastic demand. This is because the latter can provide a more efficient mechanism to streamline inventory flow and pool retailer demand, even though the former may be able to use more updated stock information to optimize system performance. The findings of the study provide insights about the key factors that drive the performance of a multiechelon inventory control system. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 637–651, 2013  相似文献   

17.
Consider a supplier offering a product to several potential demand sources, each with a unique revenue, size, and probability that it will materialize. Given a long procurement lead time, the supplier must choose the orders to pursue and the total quantity to procure prior to the selling season. We model this as a selective newsvendor problem of maximizing profits where the total (random) demand is given by the set of pursued orders. Given that the dimensionality of a mixed‐integer linear programming formulation of the problem increases exponentially with the number of potential orders, we develop both a tailored exact algorithm based on the L‐shaped method for two‐stage stochastic programming as well as a heuristic method. We also extend our solution approach to account for piecewise‐linear cost and revenue functions as well as a multiperiod setting. Extensive experimentation indicates that our exact approach rapidly finds optimal solutions with three times as many orders as a state‐of‐the‐art commercial solver. In addition, our heuristic approach provides average gaps of less than 1% for the largest problems that can be solved exactly. Observing that the gaps decrease as problem size grows, we expect the heuristic approach to work well for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008  相似文献   

18.
One of the most important decisions that a firm faces in managing its supply chain is a procurement decision: selecting suitable suppliers among many potential competing sellers and reducing the purchase cost. While both auctions and bargaining have been extensively studied in the literature, the research that combines auctions and bargaining is limited. In this article, we consider a combined auction‐bargaining model in a setting where a single buyer procures an indivisible good from one of many competing sellers. The procurement model that we analyze is a sequential model consisting of the auction phase followed by the bargaining phase. In the auction phase, the sellers submit bids, and the seller with the lowest bid is selected as the winning bidder. In the bargaining phase, the buyer audits the cost of the winning seller and then negotiates with him to determine the final price. For this auction‐bargaining model, we find a symmetric equilibrium bidding strategy for the sellers in a closed form, which is simple to understand and closely related to the classical results in the auction and bargaining literature. We also show that the auction‐bargaining model generates at least as much profit to the buyer as the standard auction or sequential bargaining model. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

19.
An important aspect of supply chain management is dealing with demand and supply uncertainty. The uncertainty of future supply can be reduced if a company is able to obtain advance capacity information (ACI) about future supply/production capacity availability from its supplier. We address a periodic‐review inventory system under stochastic demand and stochastic limited supply, for which ACI is available. We show that the optimal ordering policy is a state‐dependent base‐stock policy characterized by a base‐stock level that is a function of ACI. We establish a link with inventory models that use advance demand information (ADI) by developing a capacitated inventory system with ADI, and we show that equivalence can only be set under a very specific and restrictive assumption, implying that ADI insights will not necessarily hold in the ACI environment. Our numerical results reveal several managerial insights. In particular, we show that ACI is most beneficial when there is sufficient flexibility to react to anticipated demand and supply capacity mismatches. Further, most of the benefits can be achieved with only limited future visibility. We also show that the system parameters affecting the value of ACI interact in a complex way and therefore need to be considered in an integrated manner. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

20.
We consider a make‐to‐order production–distribution system with one supplier and one or more customers. A set of orders with due dates needs to be processed by the supplier and delivered to the customers upon completion. The supplier can process one order at a time without preemption. Each customer is at a distinct location and only orders from the same customer can be batched together for delivery. Each delivery shipment has a capacity limit and incurs a distribution cost. The problem is to find a joint schedule of order processing at the supplier and order delivery from the supplier to the customers that optimizes an objective function involving the maximum delivery tardiness and the total distribution cost. We first study the solvability of various cases of the problem by either providing an efficient algorithm or proving the intractability of the problem. We then develop a fast heuristic for the general problem. We show that the heuristic is asymptotically optimal as the number of orders goes to infinity. We also evaluate the performance of the heuristic computationally by using lower bounds obtained by a column generation approach. Our results indicate that the heuristic is capable of generating near optimal solutions quickly. Finally, we study the value of production–distribution integration by comparing our integrated approach with two sequential approaches where scheduling decisions for order processing are made first, followed by order delivery decisions, with no or only partial integration of the two decisions. We show that in many cases, the integrated approach performs significantly better than the sequential approaches. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号