首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   17篇
  2017年   2篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1997年   2篇
  1993年   2篇
  1991年   2篇
  1989年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
王军  宋永才 《国防科技》1997,18(4):57-60
运用超声将纳米金属镍均匀分散到聚碳硅烷中,通过熔融纺丝、不熔化处理、烧结,制备出具有良好力学性能、电阻率连续可调的含镍碳化硅纤维。这种纤维与环氧树脂复合制备的结构吸波材料具有良好的雷达波吸收特性。  相似文献   
2.
采用低分子量固态聚碳硅烷(PCS)和乙酰丙酮铝([Al(acac)3])为原料,利用Si-H与[Al(acac)3]之间的交联反应合成适于多孔连续熔融纺丝的聚铝碳硅烷(PACS)。研究了反应条件对产物数均分子量、软化点和组成结构的影响及交联反应程度和可纺性之间的联系。结果表明,随着反应温度的升高和时间的延长,反应程度提高,残余乙酰丙酮基减少,Si-O-Al交联支化结构增多,分子量和软化点增大,可纺性随之下降。当[Al(acac)3]投料比为8wt%时,在370°C下反应4-6h,可得到软化点为206~221°C,Alwt%=0.68%,具有良好可纺性的PACS  相似文献   
3.
液态聚硅烷高温高压合成聚碳硅烷工艺研究   总被引:4,自引:2,他引:2       下载免费PDF全文
以聚二甲基硅烷裂解制备的液态聚硅烷(LPS)为原料,在高压釜内高温高压反应制备了聚碳硅烷(PCS)先驱体,研究了合成条件对反应终压、Si H键含量、产物产率、软化点、分子量分布及可纺性的影响。研究表明,随着反应温度的提高、反应时间的延长,反应终压逐渐增大,产物的分子量与软化点增高,但同时分子量的分散性增大,使可纺性变差。当LPS在高压釜内460℃下反应3~4h,或450℃下反应6~7h时,可以制得软化点约为210~230℃的PCS,其高分子部分含量约5wt%~10wt%,Si H键含量大于0.9,可纺性较好,适合于制备SiC纤维。  相似文献   
4.
聚二甲基硅烷高压合成聚碳硅烷的组成与结构分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以聚二甲基硅烷(PDMS)为原料,在高压釜内450℃下反应6h,制备了聚碳硅烷(PCS)先驱体。对其组成及结构进行了表征,推测了PCS的大致结构模型。研究表明,PCS分子包含Si CH3、Si CH2 Si、Si H组成的SiC4、SiC3H等结构单元,实验式为SiC1.87H7.13O0.03。与常压高温裂解制备的软化点相近的PCS相比,二者的元素组成基本一致,高压合成的PCS具有较高的分子量和硅氢含量,但支化度略高。  相似文献   
5.
采用低分子量固态聚碳硅烷和乙酰丙酮铝为原料,利用Si-H与乙酰丙酮铝之间的交联反应合成适于熔融纺丝的聚铝碳硅烷。研究了反应条件对产物数均分子量、软化点和组成结构的影响及交联反应程度与可纺性之间的关系。实验结果表明:随着反应温度的升高和反应时间的延长,反应程度提高,残余乙酰丙酮基减少,Si-O-Al交联支化结构增多,分子量和软化点增大,可纺性随之下降。当乙酰丙酮铝投料比为8%时,在370℃下反应4~6 h,可得到软化点为206~221℃,Al wt%=0.68%,具有良好可纺性的聚铝碳硅烷。  相似文献   
6.
从聚硅烷(PS)与钛酸丁酯。(Ti(OBu)_4)出发,不采用任何反应促进剂直接合成了含钛碳化硅纤维的先驱体聚钛碳硅烷(PTC)。在这一反应中,PS 首先裂解成含Si—C 骨架与Si—H 键的低分子聚硅烷(LPS)。然后,由LPS 中的Si—H 键与Ti(OBu)_4的反应以及LPS 的Si—Si 骨架裂解转化为Si—C 骨架的反应制得了PTC.本文对这种新合成法所涉及的反应过程进行了研究,并比较了新旧两法得到的PTC—1与PTC—Ⅱ的结构异同,报告了以新法制得的PTC—Ⅱ为先驱体得到的含钛碳化硅纤维的优良性能。  相似文献   
7.
通过聚碳硅烷与四丁氧基钛的反应。可以制得含钛碳化硅纤维的先驱体聚钛碳硅烷。反应物配比(Ti(OBu)_4)/PC 将直接影响产物的结构与性能。随这一比例的增加,聚钛碳硅烷的可纺性与熔点将有规律地变化。这可归因于以—Ti—O—为桥的交联结构和以—Ti(OBu)_3为侧基的悬挂结构的形成。本文研究了聚钛碳硅烷的结构与性能的关系,并以具有良好成丝性的PTC-0.02与PTC-0.04为先驱体,制得了含钛碳化硅纤维。  相似文献   
8.
以环己烯作为反应气氛,对聚碳硅烷(PCS)纤维进行了化学气相交联不熔化处理。与空气不熔化进行对比,研究了不熔化过程中PCS纤维的反应程度及凝胶含量的变化,并进行了元素分析和热重差热分析,初步探讨了PCS纤维环己烯化学气相交联反应的机理。结果表明,在环己烯气氛中,PCS分子结构中Si-H键的反应程度随不熔化温度的提高逐渐增加,相应地,PCS纤维的凝胶含量迅速提高直至不熔。环己烯受热后产生自由基,引发PCS分子中的Si-H和Si-CH3键断裂形成自由基,促进PCS分子间形成Si-CH2-Si结构而实现交联。  相似文献   
9.
采用正交设计的方法从常压合成得到的中低分子量PCS出发进行热压合成制备超高分子量PCS;并运用红外、GPC、核磁共振等分析测试手段对其结构和性能进行了表征。研究表明:控制热压反应温度在460~470℃、预加压力1~2MPa、反应6h时得到超高分子量PCS的重均分子量在6400~8500;通过控制热压反应时间可以较好的调控超高分子PCS的分子量大小;热压合成后制得的超高分子量PCS的支化度和Si-H键含量有所降低。  相似文献   
10.
研究了沉淀与复配两种调控高压合成聚碳硅烷(PCS)分子量及其分布的方法。研究表明,在PCS的良溶剂(如二甲苯)溶液中加入沉淀剂(如丙酮)比例超过临界点后,PCS中分子量越高的部分越先沉淀出来,从而降低了PCS的软化点、分子量和分散系数,PCS的高、中、低分子量的比例得到调节。复配是将不同分子量分布的PCS均匀地混合在一起,其分子量、软化点和高、中、低各部分的含量基本符合混合率的关系。因此,可以按照混合率来设计所需PCS的软化点、分子量及高、中、低分子含量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号