首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2015年   1篇
  2001年   1篇
  1983年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
A new method for the solution of minimax and minisum location–allocation problems with Euclidean distances is suggested. The method is based on providing differentiable approximations to the objective functions. Thus, if we would like to locate m service facilities with respect to n given demand points, we have to minimize a nonlinear unconstrained function in the 2m variables x1,y1, ?,xm,ym. This has been done very efficiently using a quasi-Newton method. Since both the original problems and their approximations are neither convex nor concave, the solutions attained may be only local minima. Quite surprisingly, for small problems of locating two or three service points, the global minimum was reached even when the initial position was far from the final result. In both the minisum and minimax cases, large problems of locating 10 service facilities among 100 demand points have been solved. The minima reached in these problems are only local, which is seen by having different solutions for different initial guesses. For practical purposes, one can take different initial positions and choose the final result with best values of the objective function. The likelihood of the best results obtained for these large problems to be close to the global minimum is discussed. We also discuss the possibility of extending the method to cases in which the costs are not necessarily proportional to the Euclidean distances but may be more general functions of the demand and service points coordinates. The method also can be extended easily to similar three-dimensional problems.  相似文献   
2.
3.
Leaving marks at the starting points in a rendezvous search problem may provide the players with important information. Many of the standard rendezvous search problems are investigated under this new framework which we call markstart rendezvous search. Somewhat surprisingly, the relative difficulties of analysing problems in the two scenarios differ from problem to problem. Symmetric rendezvous on the line seems to be more tractable in the new setting whereas asymmetric rendezvous on the line when the initial distance is chosen by means of a convex distribution appears easier to analyse in the original setting. Results are also obtained for markstart rendezvous on complete graphs and on the line when the players' initial distance is given by an unknown probability distribution. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 722–731, 2001  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号