首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers multi‐item inventory systems where a customer order may require several different items (i.e., demands are correlated across items) and customer satisfaction is measured by the time delays seen by the customers. Most inventory models on time delay in the literature assume each demand only requires one item (i.e., demands are not correlated across items or are independent). In this paper, we derive an exact expression for the expected total time delay. We show that when items are actually correlated, assuming items are independent leads to an overestimate of the total time delay. However, (1) it is extremely difficult in practice to obtain the demand information for all demand types (especially in a system with tens of thousands of part numbers), and (2) the problem becomes too complicated to be of practical interest when the correlation is considered. We then explore the possibility of including the demand information partially and develop bounds for the time delays. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 671–688, 1999  相似文献   

2.
A model of an M/M/1, bulk queue with service rates dependent on the batch size is developed. The operational policy is to commence service when at least L customers are available with a maximum batch size of K. Arriving customers are not allowed to join in-process service. The solution procedure utilizes the matrix geometric methodology and reduces to obtaining the inverse of a square matrix of dimension K + 1 - L. For the case where the service rates are not batch size dependent, the limiting probabilities can be written in closed form. A numerical example illustrates the variability of the system cost as a function of the minimum batch service size L.  相似文献   

3.
The individual and social optimum control policies for entry to an M/M//1 queue serving several classes of customers have been shown to be control-limit policies. The technique of policy iteration provides the social optimum policy for such a queue in a straightforward manner. In this article, the problem of finding the optimal control policy for the M/Ek/1 system is solved, thereby expanding the potential applicability of the solutions developed. The Markovian nature of the queueing system is preserved by considering the service as having k sequential phases, each with independent, identically distributed, exponential service times, through which a customer must pass to be serviced. The optimal policy derived by policy iteration for such a system is likely to be difficult to use because it requires knowledge of the number of phases rather than customers in the system when an arrival occurs. To circumvent this difficulty, a heuristic is used to find a good usable (implementable) solution. In addition, a mixed-integer program is developed which yields the optimal implementable solution when solved.  相似文献   

4.
An explicit steady state solution is determined for the distribution of the number of customers for a queueing system in which Poisson arrivals are bulks of random size. The number of customers per bulk varies randomly between 1 and m, m arbitrary, according to a point multinomial, and customer service is exponential. Queue characteristics are given.  相似文献   

5.
In this paper, two different kinds of (N, T)‐policies for an M/M/m queueing system are studied. The system operates only intermittently and is shut down when no customers are present any more. A fixed setup cost of K > 0 is incurred each time the system is reopened. Also, a holding cost of h > 0 per unit time is incurred for each customer present. The two (N, T)‐policies studied for this queueing system with cost structures are as follows: (1) The system is reactivated as soon as N customers are present or the waiting time of the leading customer reaches a predefined time T, and (2) the system is reactivated as soon as N customers are present or the time units after the end of the last busy period reaches a predefined time T. The equations satisfied by the optimal policy (N*, T*) for minimizing the long‐run average cost per unit time in both cases are obtained. Particularly, we obtain the explicit optimal joint policy (N*, T*) and optimal objective value for the case of a single server, the explicit optimal policy N* and optimal objective value for the case of multiple servers when only predefined customers number N is measured, and the explicit optimal policy T* and optimal objective value for the case of multiple servers when only predefined time units T is measured, respectively. These results partly extend (1) the classic N or T policy to a more practical (N, T)‐policy and (2) the conclusions obtained for single server system to a system consisting of m (m ≥ 1) servers. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 240–258, 2000  相似文献   

6.
The M/G/1 queue with repeated attempts is considered. A customer who finds the server busy, leaves the service area and joins a pool of unsatisfied customers. Each customer in the pool repeats his demand after a random amount of time until he finds the server free. We focus on the busy period L of the M/G/1$ retrial queue. The structure of the busy period and its analysis in terms of Laplace transforms have been discussed by several authors. However, this solution has serious limitations in practice. For instance, we cannot compute the first moments of L by direct differentiation. This paper complements the existing work and provides a direct method of calculation for the second moment of L. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 115–127, 2000  相似文献   

7.
Queueing systems which include the possibility for a customer to return to the same server for additional service are called queueing systems with feedback. Such systems occur in computer networks for example. In these systems a chosen customer will wait in the queue, be serviced and then, with probability p, return to wait again, be serviced again and continue this process until, with probability (1 – p) = q, it departs the system never to return. The time of waiting plus service time, the nth time the customer goes through, we will call his nth sojourn time. The (random) sum of these sojourn times we will call the total sojourn time (abbreviated, sojourn time when there is no confusion which sojourn time we are talking about). In this paper we study the total sojourn time in a queueing system with feedback. We give the details for M/G/1 queues in which the decision to feedback or not is a Bernoulli process. While the details of the computations can be more difficult, the structure of the sojourn time process is unchanged for the M/G/1 queue with a more general decision process as will be shown. We assume the reader is familiar with Disney, McNickle and Simon [1].  相似文献   

8.
The maximum likelihood estimator of the service distribution function of an M/G/∞ service system is obtained based on output time observations. This estimator is useful when observation of the service time of each customer could introduce bias or may be impossible. The maximum likelihood estimator is compared to the estimator proposed by Mark Brown, [2]. Relative to each other, Brown's estimator is useful in light traffic while the maximum likelihood estimator is applicble in heavy trafic. Both estimators are compared to the empirical distribution function based on a sample of service times and are found to have drawbacks although each estimator may have applications in special circumstances.  相似文献   

9.
This article is devoted to the study of an M/G/1 queue with a particular vacation discipline. The server is due to take a vacation as soon as it has served exactly N customers since the end of the previous vacation. N may be either a constant or a random variable. If the system becomes empty before the server has served N customers, then it stays idle until the next customer arrival. Such a vacation discipline arises, for example, in production systems and in order picking in warehouses. We determine the joint transform of the length of a visit period and the number of customers in the system at the end of that period. We also derive the generating function of the number of customers at a random instant, and the Laplace–Stieltjes transform of the delay of a customer. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 646–658, 2015  相似文献   

10.
This paper extends the Low-Lippman M/M/1 model to the case of Gamma service times. Specifically, we have a queue in which arrivals are Poisson, service time is Gamma-distributed, and the arrival rate to the system is subject to setting an admission fee p. The arrival rate λ(p) is non-increasing in p. We prove that the optimal admission fee p* is a non-decreasing function of the customer work load on the server. The proof is for an infinite capacity queue and holds for the infinite horizon continuous time Markov decision process. In the special case of exponential service time, we extend the Low-Lippman model to include a state-dependent service rate and service cost structure (for finite or infinite time horizon and queue capacity). Relatively recent dynamic programming techniques are employed throughout the paper. Due to the large class of functions represented by the Gamma family, the extension is of interest and utility.  相似文献   

11.
We consider a queueing system with batch Poisson arrivals subject to disasters which occur independently according to a Poisson process but affect the system only when the server is busy, in which case the system is cleared of all customers. Following a disaster that affects the system, the server initiates a repair period during which arriving customers accumulate without receiving service. The server operates under a Multiple Adapted Vacation policy. The stationary regime of this process is analyzed using the supplementary variables method. We obtain the probability generating function of the number of customers in the system, the fraction of customers who complete service, and the Laplace transform of the system time of a typical customer in stationarity. The stability condition for the system and the Laplace transform of the time between two consecutive disasters affecting the system is obtained by analyzing an embedded Markov renewal process. The statistical characteristics of the batches that complete service without being affected by disasters and those of the partially served batches are also derived. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 171–189, 2015  相似文献   

12.
提出了随机服务系统的服务能力问题,给出有限服务能力的损失制M/M/1模型的描述和其稳态解,并求出了评价系统运行的几个主要数量指标。  相似文献   

13.
This article concerns scheduling policies in a surveillance system aimed at detecting a terrorist attack in time. Terrorist suspects arriving at a public area are subject to continuous monitoring, while a surveillance team takes their biometric signatures and compares them with records stored in a terrorist database. Because the surveillance team can screen only one terrorist suspect at a time, the team faces a dynamic scheduling problem among the suspects. We build a model consisting of an M/G/1 queue with two types of customers—red and white—to study this problem. Both types of customers are impatient but the reneging time distributions are different. The server only receives a reward by serving a red customer and can use the time a customer has spent in the queue to deduce its likely type. In a few special cases, a simple service rule—such as first‐come‐first‐serve—is optimal. We explain why the problem is in general difficult and we develop a heuristic policy motivated by the fact that terrorist attacks tend to be rare events. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

14.
A deterministic inventory model for reparable items   总被引:1,自引:0,他引:1  
A reparable inventory system has two distinct inventories within it—the inventory of items ready-for-issue and the inventory of carcasses available for repair. A reparable item is usually rebuilt upon failure, but the scrap rate in the repair process is generally positive. Consequently, new items must be procured from time to time to replace those item: which were scrapped. The ready-for-issue inventory has two input sources—procurement and repair, This paper develops a deterministic inbentory model for the reparable inventory system, and determines the optimal procurement and repair quantities.  相似文献   

15.
A population of items which break down at random times and require repair is studied (the classic “machine repair problem with spares”). It is desired to determine the number of repair channels and spares required over a multiyear planning horizon in which population size and component reliability varies, and a service level constraint is imposed. When an item fails, a spare (if available) is immediately dispatched to replace the failed item. The failed item is removed, transported to the repair depot, repaired, and then placed in the spares pool (which is constrained to be empty not more than 10% of the time) unless there is a backlog of requests for spares, in which case it is dispatched immediately. The first model considered treats removal, transportation, and repair as one service operation. The second model is a series queue which allows for the separate treatment of removal, transportation, and repair. Breakdowns are assumed Poisson and repair times exponential.  相似文献   

16.
AnM/G/1 queueing system is studied in which the service time required by a customer is dependent on the interarrival time between his arrival and that of his predecessor Assuming the two variables are “associated,” we prove that the expected delay in this system is less than or equal to than of a conventional M/G/1 queue This conclusion has been verified via simulation by Mitchell and Paulson [9] for a special class of dependent M/M/1 queue. Their model is a special case of the one we consider here. We also study another modified GI/G/1 queue. where the arrival process and/or the service process are individually “associated”.  相似文献   

17.
We consider a single‐queue with exhaustive or gated time‐limited services and server vacations, in which the length of each service period at the queue is controlled by a timer, i.e., the server serves customers until the timer expires or the queue becomes empty, whichever occurs first, and then takes vacations. The customer whose service is interrupted due to the timer expiration may be attended according to nonpreemptive or preemptive service disciplines. For the M/G/1 exhaustive/gated time‐limited service queueing system with an exponential timer and four typical preemptive/nonpreemptive service disciplines, we derive the Laplace—Stieltjes transforms and the moment formulas for waiting times and sojourn times through a unified approach, and provide some new results for these time‐limited service disciplines. © John Wiley & Sons, Inc. Naval Research Logistics 48: 638–651, 2001.  相似文献   

18.
We consider the single server Markovian queue subject to Poisson generated catastrophes. Whenever a catastrophe occurs, all customers are forced to abandon the system, the server is rendered inoperative and an exponential repair time is set on. During the repair time new arrivals are allowed to join the system. We assume that the arriving customers decide whether to join the system or balk, based on a natural linear reward‐cost structure with two types of rewards: A (usual) service reward for those customers that receive service and a (compensation) failure reward for those customers that are forced to abandon the system due to a catastrophe. We study the strategic behavior of the customers regarding balking and derive the corresponding (Nash) equilibrium strategies for the observable and unobservable cases. We show that both types of strategic behavior may be optimal: to avoid the crowd or to follow it. The crucial factor that determines the type of customer behavior is the relative value of the service reward to the failure compensation. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

19.
An optimal operating policy is characterized for the infinite‐horizon average‐cost case of a single server queueing control problem. The server may be turned on at arrival epochs or off at departure epochs. Two classes of customers, each of them arriving according to an independent Poisson processes, are considered. An arriving 1‐customer enters the system if the server is turned on upon his arrival, or if the server is on and idle. In the former case, the 1‐customer is selected for service ahead of those customers waiting in the system; otherwise he leaves the system immediately. 2‐Customers remain in the system until they complete their service requirements. Under a linear cost structure, this paper shows that a stationary optimal policy exists such that either (1) leaves the server on at all times, or (2) turns the server off when the system is empty. In the latter case, we show that the stationary optimal policy is a threshold strategy, this feature being commonplace in most of priority queueing systems and inventory models. However, the optimal policy in our model is determined by two thresholds instead of one. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 201–209, 2001  相似文献   

20.
This paper considers a single server queueing system that alternates stochastically between two states: operational and failed. When operational, the system functions as an M/Ek/1 queue. When the system is failed, no service takes place but customers continue to arrive according to a Poisson process; however, the arrival rate is different from that when the system is operational. The durations of the operating and failed periods are exponential with mean 1/cβ and Erlang with mean 1/cβ, respectively. Generating functions are used to derive the steady-state quantities L and W, both of which, when viewed as functions of c, decrease at a rate inversely proportional to c2. The paper includes an analysis of several special and extreme cases and an application to a production-storage system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号