首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study addresses the allocation of matched active redundancy components to coherent systems with base components having statistically dependent lifetimes. We consider base component lifetimes and redundancy component lifetimes which are both stochastic arrangement monotone with respect to a pair of components given the lifetimes of the other components. In this context, allocating a more reliable redundancy component to the weaker base component is shown to incur a stochastically larger system lifetime. Numerical examples are presented as an illustration of the theoretical results.  相似文献   

2.
This article studies coherent systems of heterogenous and statistically dependent components' lifetimes. We present a sufficient and necessary condition for a stochastically longer system lifetime resulted by allocating a single active redundancy. For exchangeable components' lifetimes, allocating the redundancy to the component with more minimal path sets is proved to produce a more reliable system, and for systems with stochastic arrangement increasing components' lifetimes and symmetric structure with respect to two components, allocating the redundancy to the weaker one brings forth a larger reliability. Several numerical examples are presented to illustrate the theoretical results as well. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 335–345, 2016  相似文献   

3.
We consider a system that depends on a single vital component. If this component fails, the system life will terminate. If the component is replaced before its failure then the system life may be extended; however, there are only a finite number of spare components. In addition, the lifetimes of these spare components are not necessarily identically distributed. We propose a model for scheduling component replacements so as to maximize the expected system survival. We find the counterintuitive result that when comparing components' general lifetime distributions based on stochastic orderings, not even the strongest ordering provides an a priori guarantee of the optimal sequencing of components. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

4.
In system reliability analysis, for an n ‐component system, the estimation of the performance of the components in the system is not straightforward in practice, especially when the components are dependent. Here, by assuming the n components in the system to be identically distributed with a common distribution belonging to a scale‐family and the dependence structure between the components being known, we discuss the estimation of the lifetime distributions of the components in the system based on the lifetimes of systems with the same structure. We develop a general framework for inference on the scale parameter of the component lifetime distribution. Specifically, the method of moments estimator (MME) and the maximum likelihood estimator (MLE) are derived for the scale parameter, and the conditions for the existence of the MLE are also discussed. The asymptotic confidence intervals for the scale parameter are also developed based on the MME and the MLE. General simulation procedures for the system lifetime under this model are described. Finally, some examples of two‐ and three‐component systems are presented to illustrate all the inferential procedures developed here. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

5.
冗余设计可以有效地延长水下传感器网络寿命和提高网络可靠性,基于可靠性理论,考虑水下传感器网络环境及节点垂直移动等约束,在对冗余非共享方案研究的基础上,结合水下传感器网络特点,提出了适合于水下传感器网络特点的冗余共享设计方案,并给出了冗余共享方案的可靠性模型,通过数值计算,研究了网络可靠性变化曲线及冗余节点数与网络寿命的关系。经过MATLAB软件仿真,表明在同一网络寿命情况下,相对于冗余非共享方案,冗余共享方案所需冗余节点数更少,降低了网络部署成本,达到了冗余优化的目的。  相似文献   

6.
Various methods and criteria for comparing coherent systems are discussed. Theoretical results are derived for comparing systems of a given order when components are assumed to have independent and identically distributed lifetimes. All comparisons rely on the representation of a system's lifetime distribution as a function of the system's “signature,” that is, as a function of the vector p= (p1, … , pn), where pi is the probability that the system fails upon the occurrence of the ith component failure. Sufficient conditions are provided for the lifetime of one system to be larger than that of another system in three different senses: stochastic ordering, hazard rate ordering, and likelihood ratio ordering. Further, a new preservation theorem for hazard rate ordering is established. In the final section, the notion of system signature is used to examine a recently published conjecture regarding componentwise and systemwise redundancy. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 507–523, 1999  相似文献   

7.
This article considers the problem of which component should be “bolstered” or “improved” in order to stochastically maximize the lifetime of a parallel system, series system, or in general, k-out-of-n system. Various ways of bolstering including active redundance, standby redundancy, and burn-in are studied. Also the method of reducing working temperature or stress level according to Arrhenius models is investigated. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 497–509, 1998  相似文献   

8.
Allocation of spare components in a system in order to optimize the lifetime of the system with respect to a suitable criterion is of considerable interest in reliability, engineering, industry, and defense. We consider the problem of allocation of K active spares to a series system of independent and identical components in order to optimize the failure-rate function of the system. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
In this paper we first introduce and study the notion of failure profiles which is based on the concepts of paths and cuts in system reliability. The relationship of failure profiles to two notions of component importance is highlighted, and an expression for the density function of the lifetime of a coherent system, with independent and not necessarily identical component lifetimes, is derived. We then demonstrate the way that failure profiles can be used to establish likelihood ratio orderings of lifetimes of two systems. Finally we use failure profiles to obtain bounds, in the likelihood ratio sense, on the lifetimes of coherent systems with independent and not necessarily identical component lifetimes. The bounds are relatively easy to compute and use. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

10.
Many conventional models that characterize the reliability of multicomponent systems are developed on the premise that for a given system, the failures of its components are independent. Although this facilitates mathematical tractability, it may constitute a significant departure from what really takes place. In many real‐world applications, system components exhibit various degrees of interdependencies, which present significant challenges in predicting degradation performance and the remaining lifetimes of the individual components as well as the system at large. We focus on modeling the performance of interdependent components of networked systems that exhibit interactive degradation processes. Specifically, we focus on how the performance level of one component affects the degradation rates of other dependent components. This is achieved by using stochastic models to characterize how degradation‐based sensor signals associated with the components evolve over time. We consider “Continuous‐Type” component interactions that occur continuously over time. This type of degradation interaction exists in many applications, in which interdependencies occur on a continuum. We use a system of stochastic differential equations to capture such “Continuous‐Type” interaction. In addition, we utilize a Bayesian approach to update the proposed model using real‐time sensor signals observed in the field and provide more accurate estimation of component residual lifetimes. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 286–303, 2014  相似文献   

11.
针对相控阵天线阵面备件配置存在的冗余性强、批量送修、多级维修等现实问题,综合考虑备件费用、维修能力以及库存策略之间的关系,建立了基于定期补给的两级备件优化配置模型。给出了系统的故障件维修周转过程和维修备件的定期补给过程,在分析备件、库存、维修能力之间关系的基础上,结合成批到达的排队理论,建立了系统的供应可用度模型。以备件配置费用最小为目标、以系统供应可用度为约束条件,建立了系统的备件优化配置模型,并通过边际效益分析法对模型进行了求解。通过算例仿真与分析对模型进行了验证。结果表明:构建的备件配置能够较好地解决相控阵天线阵面的备件配置问题,具有一定的优越性。  相似文献   

12.
In this article, we study how to derive bounds for the reliability and the expected lifetime of a coherent system with heterogeneous ordered components. These bounds can be used to compare the performance of the systems obtained by permuting the components at a given system structure, that is, to study where we should place the different components at a system structure to get the most reliable system. Moreover, a similar procedure is applied to get bounds for mixtures and for the generalized proportional hazard rate model when the baseline populations are ordered. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 108–116, 2017  相似文献   

13.
Following a review of the basic ideas in structural reliability, including signature‐based representation and preservation theorems for systems whose components have independent and identically distributed (i.i.d.) lifetimes, extensions that apply to the comparison of coherent systems of different sizes, and stochastic mixtures of them, are obtained. It is then shown that these results may be extended to vectors of exchangeable random lifetimes. In particular, for arbitrary systems of sizes m < n with exchangeable component lifetimes, it is shown that the distribution of an m‐component system's lifetime can be written as a mixture of the distributions of k‐out‐of‐n systems. When the system has n components, the vector of coefficients in this mixture representation is precisely the signature of the system defined in Samaniego, IEEE Trans Reliabil R–34 (1985) 69–72. These mixture representations are then used to obtain new stochastic ordering properties for coherent or mixed systems of different sizes. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

14.
For a component operating in random environment, whose hazard rate is assumed to be the realization of a suitable increasing stochastic process, conditions are found such that its lifetime is increasing in likelihood ratio (ILR). For the lifetimes of two components of the same kind some comparisons based on partial stochastic orders are presented. Some applications to the case of repairable components are finally provided. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 365–375, 1998  相似文献   

15.
The sequential order statistics (SOS) are a good way to model the lifetimes of the components in a system when the failure of a component at time t affects the performance of the working components at this age t. In this article, we study properties of the lifetimes of the coherent systems obtained using SOS. Specifically, we obtain a mixture representation based on the signature of the system. This representation is used to obtain stochastic comparisons. To get these comparisons, we obtain some ordering properties for the SOS, which in this context represent the lifetimes of k‐out‐of‐n systems. In particular, we show that they are not necessarily hazard rate ordered. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

16.
We discuss suitable conditions such that the lifetime of a series or of a parallel system formed by two components having nonindependent lifetimes may be stochastically improved by replacing the lifetimes of each of the components by an independent mixture of the individual components' lifetimes. We also characterize the classes of bivariate distributions where this phenomenon arises through a new weak dependence notion. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

17.
Burn‐in is a technique to enhance reliability by eliminating weak items from a population of items having heterogeneous lifetimes. System burn‐in can improve system reliability, but the conditions for system burn‐in to be performed after component burn‐in remain a little understood mathematical challenge. To derive such conditions, we first introduce a general model of heterogeneous system lifetimes, in which the component burn‐in information and assembly problems are related to the prediction of system burn‐in. Many existing system burn‐in models become special cases and two important results are identified. First, heterogeneous system lifetimes can be understood naturally as a consequence of heterogeneous component lifetimes and heterogeneous assembly quality. Second, system burn‐in is effective if assembly quality variation in the components and connections which are arranged in series is greater than a threshold, where the threshold depends on the system structure and component failure rates. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 364–380, 2003.  相似文献   

18.
In this article, we discuss the problem of testing the homogeneity of distributions of component lifetimes based on system lifetime data when the system signatures are known. Both parametric and nonparametric procedures are developed for this problem. For nonparametric testing, the Mann–Whitney‐type statistic is used, and its performance and limitations are discussed. Next, we assume the component lifetimes to follow exponential distributions and then develop different parametric tests. Exact and asymptotic methods are developed based on the method of moments estimators. A Monte Carlo simulation study is used to compare the performance of different parametric procedures with that of the nonparametric procedure. Based on the results of the simulation study, discussions and practical recommendations are made and finally some concluding remarks are provided. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 550–563, 2015  相似文献   

19.
针对单部件系统工龄更换策略下备件需求的特点,建立了工龄更换策略与备件库存控制的联合优化模型。该模型通过分析一个订购期内工龄更换间隔期T及备件最大库存水平S对系统寿命分布的影响,建立了工龄更换间隔期、订购间隔期及最大库存水平与单位时间总费用(包括维修费用和库存费用)的关系,然后以单位时间总费用最小为目标,优化工龄更换间隔期T、订购间隔期t0及最大库存水平S。最后,基于案例,运用Matlab对模型进行数值计算,结果表明模型能有效地降低单位时间的总费用。  相似文献   

20.
We consider the classical problem of whether certain classes of lifetime distributions are preserved under the formation of coherent systems. Under the assumption of independent and identically distributed (i.i.d.) component lifetimes, we consider the NBUE (new better than used in expectation) and NWUE (new worse than used in expectation) classes. First, a necessary condition for a coherent system to preserve the NBUE class is given. Sufficient conditions are then obtained for systems satisfying this necessary condition. The sufficient conditions are satisfied for a collection of systems which includes all parallel systems, but the collection is shown to be strictly larger. We also prove that no coherent system preserves the NWUE class. As byproducts of our study, we obtain the following results for the case of i.i.d. component lifetimes: (a) the DFR (decreasing failure rate) class is preserved by no coherent systems other than series systems, and (b) the IMRL (increasing mean residual life) class is not preserved by any coherent systems. Generalizations to the case of dependent component lifetimes are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号