首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 471 毫秒
1.
This paper considers a three‐person rendezvous problem on the line which was introduced earlier by the authors. Three agents are placed at three consecutive integer value points on the real line, say 1, 2, and 3. Each agent is randomly faced towards the right or left. Agents are blind and have a maximum speed of 1. Their common aim is to gather at a common location as quickly as possible. The main result is the proof that a strategy given by V. Baston is the unique minimax strategy. Baston's strategy ensures a three way rendezvous in time at most 3.5 for any of the 3!23 = 48 possible initial configurations corresponding to positions and directions of each agent. A connection is established between the above rendezvous problem and a search problem of L. Thomas in which two parents search separately to find their lost child and then meet again. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 244–255, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10005  相似文献   

2.
We have asymptotically solved a discrete search game on an array of n ordered cells with two players: infiltrator (hider) and searcher, when the probability of survival approaches 1. The infiltrator wishes to reach the last cell in finite time, and the searcher has to defend that cell. When the players occupy the same cell, the searcher captures the infiltrator with probability 1 ? z. The payoff to the hider is the probability that the hider reaches the last cell without getting captured. © 2002 John Wiley & Sons, Inc. Naval Research Logistics, 49: 1–14, 2002; DOI 10.1002/nav.1047  相似文献   

3.
The exact evaluation of the probability that the maximum st‐flow is greater than or equal to a fixed demand in a stochastic flow network is an NP‐hard problem. This limitation leads one to consider Monte Carlo alternatives. In this paper, we propose a new importance sampling Monte Carlo method. It is based on a recursive use of the state space decomposition methodology of Doulliez and Jamoulle during the simulation process. We show theoretically that the resulting estimator belongs to the variance‐reduction family and we give an upper bound on its variance. As shown by experimental tests, the new sampling principle offers, in many cases, substantial speedups with respect to a previous importance sampling based on the same decomposition procedure and its best performances are obtained when highly reliable networks are analyzed. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 204–228, 2002; DOI 10.1002/nav.10004  相似文献   

4.
A network with traffic between nodes is known. The links of the network can be designed either as two‐way links or as one‐way links in either direction. The problem is to find the best configuration of the network which minimizes total travel time for all users. Branch and bound optimal algorithms are practical only for small networks (up to 15 nodes). Effective simulated annealing and genetic algorithms are proposed for the solution of larger problems. Both the simulated annealing and the genetic algorithms propose innovative approaches. These innovative ideas can be used in the implementation of these heuristic algorithms for other problems as well. Additional tabu search iterations are applied on the best results obtained by these two procedures. The special genetic algorithm was found to be the best for solving a set of test problems. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 449–463, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10026  相似文献   

5.
In an accumulation game, a HIDER attempts to accumulate a certain number of objects or a certain quantity of material before a certain time, and a SEEKER attempts to prevent this. In a continuous accumulation game the HIDER can pile material either at locations $1, 2, …, n, or over a region in space. The HIDER will win (payoff 1) it if accumulates N units of material before a given time, and the goal of the SEEKER will win (payoff 0) otherwise. We assume the HIDER can place continuous material such as fuel at discrete locations i = 1, 2, …, n, and the game is played in discrete time. At each time k > 0 the HIDER acquires h units of material and can distribute it among all of the locations. At the same time, k, the SEEKER can search a certain number s < n of the locations, and will confiscate (or destroy) all material found. After explicitly describing what we mean by a continuous accumulation game on discrete locations, we prove a theorem that gives a condition under which the HIDER can always win by using a uniform distribution at each stage of the game. When this condition does not hold, special cases and examples show that the resulting game becomes complicated even when played only for a single stage. We reduce the single stage game to an optimization problem, and also obtain some partial results on its solution. We also consider accumulation games where the locations are arranged in either a circle or in a line segment and the SEEKER must search a series of adjacent locations. © 2002 John Wiley & Sons, Inc. Naval Research Logistics, 49: 60–77, 2002; DOI 10.1002/nav.1048  相似文献   

6.
We consider the ??p‐norm multi‐facility minisum location problem with linear and distance constraints, and develop the Lagrangian dual formulation for this problem. The model that we consider represents the most general location model in which the dual formulation is not found in the literature. We find that, because of its linear objective function and less number of variables, the Lagrangian dual is more useful. Additionally, the dual formulation eliminates the differentiability problem in the primal formulation. We also provide the Lagrangian dual formulation of the multi‐facility minisum location problem with the ??pb‐norm. Finally, we provide a numerical example for solving the Lagrangian dual formulation and obtaining the optimum facility locations from the solution of the dual formulation. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 410–421, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10010  相似文献   

7.
We present a service constrained (Q, r) model that minimizes expected holding and ordering costs subject to an upper bound on the expected waiting time of demands that are actually backordered. We show that, after optimizing over r, the average cost is quasiconvex in Q for logconcave continuous lead time demand distributions. For logconcave discrete lead time demand distributions we find a single‐pass efficient algorithm based on a novel search stopping criterion. The algorithm also allows for bounds on the variability of the service measure. A brief numerical study indicates how the bounds on service impact the optimal average cost and the optimal (Q, r) choice. The discrete case algorithm can be readily adapted to provide a single pass algorithm for the traditional model that bounds the expected waiting time of all demands (backordered or not). © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 557–573, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10028  相似文献   

8.
This paper deals with a two‐person zero‐sum game called a search allocation game, where a searcher and a target participate, taking account of false contacts. The searcher distributes his search effort in a search space in order to detect the target. On the other hand, the target moves to avoid the searcher. As a payoff of the game, we take the cumulative amount of search effort weighted by the target distribution, which can be derived as an approximation of the detection probability of the target. The searcher's strategy is a plan of distributing search effort and the target's is a movement represented by a path or transition probability across the search space. In the search, there are false contacts caused by environmental noises, signal processing noises, or real objects resembling true targets. If they happen, the searcher must take some time for their investigation, which interrupts the search for a while. There have been few researches dealing with search games with false contacts. In this paper, we formulate the game into a mathematical programming problem to obtain its equilibrium point. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

9.
Leaving marks at the starting points in a rendezvous search problem may provide the players with important information. Many of the standard rendezvous search problems are investigated under this new framework which we call markstart rendezvous search. Somewhat surprisingly, the relative difficulties of analysing problems in the two scenarios differ from problem to problem. Symmetric rendezvous on the line seems to be more tractable in the new setting whereas asymmetric rendezvous on the line when the initial distance is chosen by means of a convex distribution appears easier to analyse in the original setting. Results are also obtained for markstart rendezvous on complete graphs and on the line when the players' initial distance is given by an unknown probability distribution. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 722–731, 2001  相似文献   

10.
This article considers the preventive flow interception problem (FIP) on a network. Given a directed network with known origin‐destination path flows, each generating a certain amount of risk, the preventive FIP consists of optimally locating m facilities on the network in order to maximize the total risk reduction. A greedy search heuristic as well as several variants of an ascent search heuristic and of a tabu search heuristic are presented for the FIP. Computational results indicate that the best versions of the latter heuristics consistently produce optimal or near optimal solutions on test problems. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 287–303, 2000  相似文献   

11.
This paper presents a branch and bound algorithm for computing optimal replacement policies in a discrete‐time, infinite‐horizon, dynamic programming model of a binary coherent system with n statistically independent components, and then specializes the algorithm to consecutive k‐out‐of‐n systems. The objective is to minimize the long‐run expected average undiscounted cost per period. (Costs arise when the system fails and when failed components are replaced.) An earlier paper established the optimality of following a critical component policy (CCP), i.e., a policy specified by a critical component set and the rule: Replace a component if and only if it is failed and in the critical component set. Computing an optimal CCP is a optimization problem with n binary variables and a nonlinear objective function. Our branch and bound algorithm for solving this problem has memory storage requirement O(n) for consecutive k‐out‐of‐n systems. Extensive computational experiments on such systems involving over 350,000 test problems with n ranging from 10 to 150 find this algorithm to be effective when n ≤ 40 or k is near n. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 288–302, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10017  相似文献   

12.
The container relocation problem (CRP) is concerned with emptying a single yard‐bay which contains J containers each following a given pickup order so as to minimize the total number of relocations made during their retrieval process. The CRP can be modeled as a binary integer programming (IP) problem and is known to be NP‐hard. In this work, we focus on an extension of the CRP to the case where containers are both received and retrieved from a single yard‐bay, and call it the dynamic container relocation problem. The arrival (departure) sequences of containers to (from) the yard‐bay is assumed to be known a priori. A binary IP formulation is presented for the problem. Then, we propose three types of heuristic methods: index based heuristics, heuristics using the binary IP formulation, and a beam search heuristic. Computational experiments are performed on an extensive set of randomly generated test instances. Our results show that beam search heuristic is very efficient and performs better than the other heuristic methods.Copyright © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 101–118, 2014  相似文献   

13.
This paper tackles the general single machine scheduling problem, where jobs have different release and due dates and the objective is to minimize the weighted number of late jobs. The notion of master sequence is first introduced, i.e., a sequence that contains at least an optimal sequence of jobs on time. This master sequence is used to derive an original mixed‐integer linear programming formulation. By relaxing some constraints, a Lagrangean relaxation algorithm is designed which gives both lower and upper bounds. The special case where jobs have equal weights is analyzed. Computational results are presented and, although the duality gap becomes larger with the number of jobs, it is possible to solve problems of more than 100 jobs. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 50: 2003  相似文献   

14.
Suppose one object is hidden in the k-th of n boxes with probability p(k). The boxes are to be searched sequentially. Associated with the j-th search of box k is a cost c(j,k) and a conditional probability q(j,k) that the first j - 1 searches of box k are unsuccessful while the j-th search is successful given that the object is hidden in box k. The problem is to maximize the probability that we find the object if we are not allowed to offer more than L for the search. We prove the existence of an optimal allocation of the search effort L and state an algorithm for the construction of an optimal allocation. Finally, we discuss some problems concerning the complexity of our problem.  相似文献   

15.
The machine scheduling literature does not consider the issue of tool change. The parallel literature on tool management addresses this issue but assumes that the change is due only to part mix. In practice, however, a tool change is caused most frequently by tool wear. That is why we consider here the problem of scheduling a set of jobs on a single CNC machine where the cutting tool is subject to wear; our objective is to minimize the total completion time. We first describe the problem and discuss its peculiarities. After briefly reviewing available theoretical results, we then go on to provide a mixed 0–1 linear programming model for the exact solution of the problem; this is useful in solving problem instances with up to 20 jobs and has been used in our computational study. As our main contribution, we next propose a number of heuristic algorithms based on simple dispatch rules and generic search. We then discuss the results of a computational study where the performance of the various heuristics is tested; we note that the well‐known SPT rule remains good when the tool change time is small but deteriorates as this time increases and further that the proposed algorithms promise significant improvement over the SPT rule. © 2002 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

16.
In this paper, we study a m‐parallel machine scheduling problem with a non‐crossing constraint motivated by crane scheduling in ports. We decompose the problem to allow time allocations to be determined once crane assignments are known and construct a backtracking search scheme that manipulates domain reduction and pruning strategies. Simple approximation heuristics are developed, one of which guarantees solutions to be at most two times the optimum. For large‐scale problems, a simulated annealing heuristic that uses random neighborhood generation is provided. Computational experiments are conducted to test the algorithms. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   

17.
A districting problem is formulated as a network partitioning model where each link has one weight to denote travel time and another weight to denote workload. The objective of the problem is to minimize the maximum diameter of the districts while equalizing the workload among the districts. The case of tree networks is addressed and efficient algorithms are developed when the network is to be partitioned into two or three districts. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 143–158, 2002; DOI 10.1002/nav.10003  相似文献   

18.
Competitive imperatives are causing manufacturing firms to consider multiple criteria when designing products. However, current methods to deal with multiple criteria in product design are ad hoc in nature. In this paper we present a systematic procedure to efficiently solve bicriteria product design optimization problems. We first present a modeling framework, the AND/OR tree, which permits a simplified representation of product design optimization problems. We then show how product design optimization problems on AND/OR trees can be framed as network design problems on a special graph—a directed series‐parallel graph. We develop an enumerative solution algorithm for the bicriteria problem that requires as a subroutine the solution of the parametric shortest path problem. Although this parametric problem is hard on general graphs, we show that it is polynomially solvable on the series‐parallel graph. As a result we develop an efficient solution algorithm for the product design optimization problem that does not require the use of complex and expensive linear/integer programming solvers. As a byproduct of the solution algorithm, sensitivity analysis for product design optimization is also efficiently performed under this framework. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 574–592, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10031  相似文献   

19.
Various indices of component importance with respect to system reliability have been proposed. The most popular one is the Birnbaum importance. In particular, a special case called uniform Birnbaum importance in which all components have the same reliability p has been widely studied for the consecutive‐k system. Since it is not easy to compare uniform Birnbaum importance, the literature has looked into the case p = ½, p → 1, or p ≥ ½. In this paper, we look into the case p → 0 to complete the spectrum of examining Birnbaum importance over the whole range of p. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 159–166, 2002; DOI 10.1002/nav.10001  相似文献   

20.
We consider the problem of sequencing n jobs on a single machine, with each job having a processing time and a common due date. The common due date is assumed to be so large that all jobs can complete by the due date. It is known that there is an O(n log n)‐time algorithm for finding a schedule with minimum total earliness and tardiness. In this article, we consider finding a schedule with dual criteria. The primary goal is to minimize the total earliness and tardiness. The secondary goals are to minimize: (1) the maximum earliness and tardiness; (2) the sum of the maximum of the squares of earliness and tardiness; (3) the sum of the squares of earliness and tardiness. For the first two criteria, we show that the problems are NP‐hard and we give a fully polynomial time approximation scheme for both of them. For the last two criteria, we show that the ratio of the worst schedule versus the best schedule is no more than . © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 422–431, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10020  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号