首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 111 毫秒
1.
917低磁钢与铝合金爆炸焊接复合实验研究   总被引:4,自引:0,他引:4  
采用异种金属爆炸焊接复合技术 ,研制了 91 7低磁钢与LF5、LF2 1、LF1 1等铝合金的爆炸焊接复合板 ,并对该铝—钢复合板力学性能进行了实验研究 ,对复合界面进行了金相分析 .实验结果表明 ,该铝—钢复合板复合界面物理结合良好 ,其抗剪和抗弯强度满足实船使用要求  相似文献   

2.
采用超声焊接铝合金箔材的工艺修复处理表面腐蚀受损的2A12CZ基体,并利用Quanta200型环境扫描电子显微镜分析了截面形貌及箔材与基体之间界面表面断口的微观形貌。结果表明:从截面来看,箔材与基体之间大部分发生了焊合,界面分界线大部分消失;从机械脱开的界面断口来看,其表面微观形貌表现为鳞片状及韧窝状的典型金属型断口形貌。这说明在给定条件下,焊接部位大部分呈冶金结合。最后对铝台金箔材与铝合金基体之间超声焊接机理进行了探讨。  相似文献   

3.
爆炸复合接头剪切强度测试方法研究   总被引:2,自引:0,他引:2  
参照正交各向异性层压复合板层间剪切强度的测试方法,提出了用于测试爆炸复合接头复合界面剪切强度的3种方法;并建立三维有限元模型,分别对3种测试方法进行模拟;最后分别对3种方法进行了测试试验.结果表明,3种试验方法均能有效测试爆炸复合接头的剪切强度,其中对称试件双切口拉伸法最适合实际应用.  相似文献   

4.
为研究添加中间层对TA2/5083爆炸焊接的影响,分别选取0.3 mm和0.5 mm厚度的1060铝中间层,利用ANSYS/LS-DYNA软件结合ALE算法建立三维数值模型,分别模拟出添加0.3 mm和0.5 mm厚度1060铝中间层的焊接过程,与直接爆炸焊接TA2和5083复合板进行对比。模拟结果表明:选择适当厚度的1060铝中间层,能有效减少基板所受碰撞压力,让爆炸焊接过程更加平稳;结合建立的爆炸复合窗口,添加中间层能大大扩展可焊接窗口,减小碰撞速度,模拟结果更加接近理论碰撞速度,使复板以更佳的飞行速度与基板结合;0.3 mm厚度中间层复合板的焊接质量高于0.5 mm厚度中间层高于无中间层的,模拟与实验吻合较好,添加合适厚度的中间层1060能大程度提高TA2/5083复合质量。  相似文献   

5.
一种Cu基自蔓延焊笔焊接Q235和45钢焊缝的组织与性能   总被引:1,自引:0,他引:1  
利用研制的一种可焊接6~10 mm厚钢结构件的Cu基自蔓延焊笔,焊接了10 mm厚的Q235钢和45钢,研究了其焊缝的组织形貌和性能,发现焊缝与基体间存在熔合区,焊缝属于熔焊焊接.焊缝的拉伸强度达282 MPa,弯曲强度达628 MPa,冲击韧度为46.43 J/cm2;焊缝显微硬度达HV0.1230,熔合区显微硬度达HV0.1255.6,高于基体热影响区的硬度.  相似文献   

6.
为解决湿法焊接焊缝质量不高的问题,对铝青铜材料展开水下湿法激光焊接实验,利用扫描电子显微镜(Scanning Electron Microscope,SEM)、显微硬度仪、万能试验机分别检测和分析了焊接接头的微观组织和力学性能。结果表明:铝青铜水下湿法焊接会出现大量气孔,水深增加会导致气孔增多,提高焊接速度可以改善焊缝成形质量,通过在基体表面预置自蔓延粉末能够有效减少气孔;焊缝中上部为胞状晶组织,底部为发达的树枝晶;焊缝平均硬度为240 HV,与基体相比提高了50%;拉伸试验试件均断裂在焊缝处,平均拉伸强度为235 MPa,为基体的43%。  相似文献   

7.
低合金船体钢点蚀敏感性的研究   总被引:9,自引:1,他引:8  
通过极化试验比较了4种含有不同合金元素的低合金钢的点蚀诱发敏感性,并用电子探针对钢中的主要夹杂物及点蚀诱发后的腐蚀形态作了鉴定.结果表明:镍-铬系钢比锰系钢具有更好的耐点蚀性能;点蚀总是从夹杂物与周围钢基体毗邻的界面处开始诱发;含有硫化物的复相夹杂对点蚀的敏感性更强.  相似文献   

8.
在电磁发射器发射拦截弹撞击来袭目标的过程中,拦截弹的结构材料参数是影响拦截弹加速性能及毁伤能力的一个重要因素。在实验中常用的铝合金材料拦截弹基础上,提出铝-钢、铜-钢2种复合拦截弹结构,以拦截弹与钨合金杆式穿甲弹的碰撞过程为例,对3种拦截弹对来袭目标的毁伤能力进行对比分析。  相似文献   

9.
针对铝合金表面硬度低和易磨损的问题,采用超音速微粒沉积技术在5083铝合金表面制备了Ti-45Al-7Nb-4Cr合金涂层。利用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对涂层微观形貌和物相组成进行了观察和分析,并对比测试了5083铝合金、Ti-45Al-7Nb-4Cr合金铸锭和涂层的显微硬度和摩擦学性能。结果表明:Ti-45Al-7Nb-4Cr合金涂层内部颗粒间存在冶金结合和机械嵌合2种结合方式,涂层与5083铝合金基体的结合方式为机械嵌合;涂层主要相组成为γ-Ti Al、α2-Ti3Al和β-Ti相;通过在5083铝合金表面制备Ti-45Al-7Nb-4Cr合金涂层,显微硬度提高4倍以上,磨损体积减少69%以上;涂层的磨损机理为磨料磨损和氧化磨损,具有较好的耐磨性能。  相似文献   

10.
橡胶-钢粘接界面断裂问题非线性有限元分析   总被引:1,自引:0,他引:1  
为解决橡胶-钢粘接界面断裂非线性有限元计算问题,建立了含初始裂纹的橡胶-钢粘接复合结构有限元模型;用张开位移作为裂纹开裂的判定参数并模拟了裂纹的扩展,计算值与试验值的对比证明了该方法的可行性;计算了开裂前粘接界面的层间应力,分析了开裂前裂纹前沿和沿裂纹扩展方向的层间应力变化情况;用断裂力学中的柔度法计算橡胶-钢复合结构的能量释放率,计算并分析了能量释放率沿裂纹扩展方向的变化情况,并与实验结果进行了对比验证,结果证明:该方法是可行的。  相似文献   

11.
Nano-sized aluminum(Nano-Al)powders hold promise in enhancing the total energy of explosives and the metal acceleration ability at the same time.However,the near-detonation zone effects of reaction between Nano-Al with detonation products remain unclear.In this study,the overall reaction process of 170 nm Al with RDX explosive and its effect on detonation characteristics,detonation reaction zone,and the metal acceleration ability were comprehensively investigated through a variety of experiments such as the detonation velocity test,detonation pressure test,explosive/window interface velocity test and confined plate push test using high-resolution laser interferometry.Lithium fluoride(LiF),which has an inert behavior during the explosion,was used as a control to compare the contribution of the reaction of aluminum.A thermochemical approach that took into account the reactivity of aluminum and ensuing detonation products was adopted to calculate the additional energy release by afterburn.Combining the numerical simulations based on the calculated afterburn energy and experimental results,the param-eters in the detonation equation of state describing the Nano-Al reaction characteristics were calibrated.This study found that when the 170 nm Al content is from 0%to 15%,every 5%increase of aluminum resulted in about a 1.3%decrease in detonation velocity.Manganin pressure gauge measurement showed no significant enhancement in detonation pressure.The detonation reaction time and reaction zone length of RDX/Al/wax/80/15/5 explosive is 64 ns and 0.47 mm,which is respectively 14%and 8%higher than that of RDX/wax/95/5 explosive(57 ns and 0.39 mm).Explosive/window interface velocity curves show that 170 nm Al mainly reacted with the RDX detonation products after the detonation front.For the recording time of about 10 μs throughout the plate push test duration,the maximum plate velocity and plate acceleration time accelerated by RDX/Al/wax/80/15/5 explosive is 12%and 2.9 μs higher than that of RDX/LiF/wax/80/15/5,respectively,indicating that the aluminum reaction energy significantly increased the metal acceleration time and ability of the explosive.Numerical simulations with JWLM explosive equation of state show that when the detonation products expanded to 2 times the initial volume,over 80%of the aluminum had reacted,implying very high reactivity.These results are significant in attaining a clear understanding of the reaction mechanism of Nano-Al in the development of aluminized explosives.  相似文献   

12.
Explosive welding technique is widely used in many industries. This technique is useful to weld different kinds of metal alloys that are not easily welded by any other welding methods. Interlayer plays an important role to improve the welding quality and control energy loss during the collision process. In this paper, the Ti6Al4V plate was welded with a copper plate in the presence of a commercially pure titanium interlayer. Microstructure details of welded composite plate were observed through optical and scanning electron microscope. Interlayer-base plate interface morphology showed a wavy structure with solid melted regions inside the vortices. Moreover, the energy dispersive spectroscopy analysis in the interlayer-base interface reveals that there are some identified regions of different kinds of chemical equilibrium phases of Cu–Ti, i.e. CuTi, Cu2Ti, CuTi2, Cu4Ti, etc. To study the mechanical properties of composite plates, mechanical tests were conducted, including the tensile test, bending test, shear test and Vickers hardness test. Numerical simulation of explosive welding process was performed with coupled Smooth Particle Hydrodynamic method, Euler and Arbitrary Lagrangian-Eulerian method. The multi-physics process of explosive welding, including detonation, jetting and interface morphology, was observed with simulation. Moreover, simulated plastic strain, temperature and pressure profiles were analysed to understand the welding conditions. Simulated results show that the interlayer base plate interface was created due to the high plastic deformation and localized melting of the parent plates. At the collision point, both alloys behave like fluids, resulting in the formation of a wavy morphology with vortices, which is in good agreement with the experimental results.  相似文献   

13.
《防务技术》2020,16(6):1160-1166
Aluminium composites are inevitable in the manufacture of aircraft structural elements owing to less weight, superior corrosion resistance and higher specific properties. These composites reduce the weight of the aircraft, improve the fuel efficiency and enhance the maintenance duration. This study proposes the development of dissimilar grade aluminium (aluminium 1100-aluminium 5052) composites with different reinforcement’s viz., stainless steel wire-mesh, silicon carbide (SiC) powders and SiC powder interspersed wire-mesh, by explosive cladding technique. Wire-mesh enhances the friction and restricts the movement of flyer plate to craft a defect free clad, while SiC particles form a band on the interface. Highest strength is obtained when SiC powder interspersed wire mesh is employed as reinforcement. The dissimilar aluminium explosive clad with SiC particle reinforcement results in lower strength, which is higher than that of the weaker parent alloy and that of the conventional dissimilar aluminium explosive clads without any reinforcement.  相似文献   

14.
In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate. Metal powders' explosive properties and reaction mechanisms in FAE were studied by high-speed video, pressure test system, and infrared thermal imager. The results show that compared with pure liquid fuels, the shock wave overpressure, maximum surface fireball temperature and high temperature duration of the mixture were significantly increased after adding high energetic metal powder. The overpressure values of the liquid-solid mixture at all measuring points were higher than that of the pure liquid fuels. And the maximum temperature of the fireball was up to 1700 ℃, which was higher than that of the pure liquid fuels. After replacing 30%of aluminum powder with boron or magnesium hydride, the shock wave pressure of the mixture was further increased. The high heat of combustion of boron and the hydrogen released by magnesium hydride could effectively increase the blast effect of the mixture. The improvement of the explosion performance of boron was better than magnesium hydride. It shows that adding high energetic metal powder to liquid fuels can effectively improve the explosion performance of FAE.  相似文献   

15.
针对深空探测采样容器的特殊要求,进行爆炸焊接严实密封技术研究。利用非线性动力学软件进行铝质柱形容器爆炸焊接数值模拟,得到各种焊接初始参数的影响规律,确定较佳焊接初始参数及容器结构尺寸,并进行实验验证。实验结果表明:外盖角度为7°时,1mm壁厚外盖配4mm壁厚内圆柱或2mm壁厚外盖配6mm壁厚内圆柱,配以较合适炸药厚度,密实焊接效果较理想。研究结果为深空探测采样容器结构设计提供了较好的参考。  相似文献   

16.
The explosive reaction degree and protection from explosions are concerns in the military field.In this work,the reaction degree of the composition B explosive was investigated experimentally.Multi-layered compound structures were used as barriers to weaken the blast loads.A comprehensive experiment using a high-speed camera and image processing techniques,side witness plates,and bottom witness plates was presented.Using the experimental fragment velocities,fragment piercing patterns,and damage characteristics,the reaction degree of the explosive impeded by different multi-layered com-pound structures could be precisely differentiated.Reaction parameters of the explosive obstructed by compound structures were obtained by theoretical analysis and numerical simulations.Unlike the common method in which the explosive reaction degree is only distinguished based on the initial pressure amplitude transmitted into the explosive,a following shock wave reflected from the side steel casing was also considered.Different detonation growth paths in the explosive formed.Therefore,all these shock wave propagation characteristics must be considered to analyze the explosive response impeded by compound structures.  相似文献   

17.
The effect of underwater shock wave on different target plates has been studied.An underwater shock wave generator(shock tube) was used to study the interactions between water and different constructed targets which act as shock wave mitigation.Target plates,composed of sandwich of two aluminum sheets with rubber and foam in between,were prepared and studied.For comparison,the target plates composed of triple aluminum sheets were tested.The study includes the testing of the selected plates in water under the effect of different peak pressures and the analysis of the results.The strain gauge data and displacement sensors results showed that the multi-layer plates have higher level of underwater shock wave mitigation than the triple aluminum plates with strain and deflection of nearly 50%.  相似文献   

18.
为了修复45钢磨损装备零件,采用激光熔覆工艺在45钢表面制备了Ni35合金涂层。利用扫描电镜(SEM)、能谱分析仪(EDS)、X射线衍射仪、显微硬度计和磨损试验机分析了熔覆层的显微组织,测试了涂层的硬度和耐磨性能。结果表明:熔覆层由γ-Ni和Ni3B两相组成;熔覆层中存在平面晶、胞状晶、枝晶等多种形态;Ni35熔覆层的硬度为450HV,熔覆层的耐磨性是基体的2.86倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号