首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
本文首先对圆柱壳受水下爆炸冲击波作用下的流体与结构的相互作用进行了分析,导出了在近距离、小药量爆炸条件下圆柱壳表面实际壁压的近似公式。在此基础上对圆柱壳爆炸实验的实测壁压进行了分析。结合壳体在冲击波作用下弹塑性响应的计算结果,对实测壁压给出了合理的解释。为进一步进行壳体响应分析打下了基础。  相似文献   

2.
钢—混凝土复合爆炸容器内爆响应数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
应用动力有限元方法模拟了轴对称椭球顶圆柱密闭式抗爆容器内部爆炸流场,并对钢衬-混凝土复合容器壁的应力应变响应进行了数值模拟分析.分析结果显示:钢衬层应力波动的低、高频两部分分别起因于压力波的反复作用及钢衬结构的本征振动,二次波对容器顶部的作用很重要,并由此对混凝土的塑性及损伤的时空分布产生重要影响.数值模拟结果与实验结果一致.  相似文献   

3.
为研究添加中间层对TA2/5083爆炸焊接的影响,分别选取0.3 mm和0.5 mm厚度的1060铝中间层,利用ANSYS/LS-DYNA软件结合ALE算法建立三维数值模型,分别模拟出添加0.3 mm和0.5 mm厚度1060铝中间层的焊接过程,与直接爆炸焊接TA2和5083复合板进行对比。模拟结果表明:选择适当厚度的1060铝中间层,能有效减少基板所受碰撞压力,让爆炸焊接过程更加平稳;结合建立的爆炸复合窗口,添加中间层能大大扩展可焊接窗口,减小碰撞速度,模拟结果更加接近理论碰撞速度,使复板以更佳的飞行速度与基板结合;0.3 mm厚度中间层复合板的焊接质量高于0.5 mm厚度中间层高于无中间层的,模拟与实验吻合较好,添加合适厚度的中间层1060能大程度提高TA2/5083复合质量。  相似文献   

4.
本文提出了有限水域内水下爆炸实验设计的一般考虑方法,结合实验结果得到了各种条件(λ/D)下圆柱壳受水下爆炸作用时的壁压分布规律,采用塑性动力学中绝对最小原理对结构响应进行了数值计算,给出了冲击波作用下圆柱壳响应的一种偏安全估算方法。  相似文献   

5.
为设计爆炸容器并确保其力学实验安全,研究了容器内部的载荷分布特征和规律,根据研究需求,设计加工了一柱形爆炸容器。数值模拟结果表明,该容器在最大实验药量(1 230 gTNT)作用下结构是安全的。在多次内爆载荷测试实验中(最大实验药量为1 000 gTNT),该容器没有出现塑性变形,认为容器结构设计合理,实验安全可靠,达...  相似文献   

6.
本文着重分析研究在爆炸焊接过程中,三个不同边界区域边界效应的产生和发展,同时对如何消除国边界效应的影响也进行了研究探讨,从而针对目前爆炸焊接普遍存在的这三类边界效应问题,我们通过优化爆炸焊接工艺参数,采用爆炸切焊法,即融爆炸切割技术与焊接技术于一体,消除了边界效应的影响,使焊接复合率达到100%。  相似文献   

7.
针对飞行器试验用点火器的通用测量装置,提出了一种柱形爆炸容器的设计方法,从容器壁厚、反射超压、应用材料、容器结构以及点火器爆炸当量等方面进行考虑,计算柱形爆炸容器的压力瞬间载荷,并利用COSMOS Works软件进行应力仿真,最后通过实际飞行试验环节进行验证,回收采集系统所记录的试验数据并间接分析出点火器的工作状态,结果表明:试验结果和理论分析完全吻合,容器设计合理,从而为飞行器研制试验用点火器驱动动力装置提供必要的数据参考和支撑。  相似文献   

8.
针对受限空间油料火灾爆炸发生、发展、控制、抑制实验的需要,研制了一系列模拟实验台架及关键参数测试系统。所研制的一系列模拟实验台架为各种工况的油料火灾爆炸模拟实验研究提供了完备的科研条件和支撑;研制的超动态数据采集与分析系统能对冲击波压力、瞬时温度、火焰识别、爆燃向爆轰演化(DDT)过程等进行连续捕捉、测试、分析;研制的基于紫外火焰探测、数字信号处理和网络化智能探测技术的油气爆炸火焰传播速度测试系统较传统的火焰传感器具有高灵敏度、零误报、探测距离远的特点。  相似文献   

9.
设计了20 L非均匀容积式受限空间油气爆炸实验系统,完成了油气在其中的爆炸参数测试实验,获得了超压和火焰参数的变化规律。研究结果表明,超压随时间的变化可分为6个阶段,最大超压为791 k Pa;与20 L标准球形容器相比,非均匀受限空间油气爆炸过程中出现强压力振荡,振荡波峰值随时间的变化可用指数函数描述。火焰强度随时间的变化可分为4个阶段,各阶段火焰形态的变化为:球状蓝色层流火焰→亮黄色火焰→暗红色火焰→火焰熄灭。随着油气初始体积分数的增大,最大超压和平均升压速率呈现出先增大后减小的趋势,最大超压峰值(791 k Pa)和最大平均升压速率(7.4 MPa/s)对应的油气初始体积分数均为1.74%,且最大超压和平均升压速率随油气初始体积分数的变化可分别用二次多项式和三次多项式描述。随着油气初始体积分数的增大,火焰强度也呈现出先增大后减小再增大的变化规律,最大火焰强度为7 300 lux,火焰持续时间呈现出先减小后增大的变化规律,最短持续时间为0.317 s,最大火焰强度和最短持续时间对应的油气初始体积分数均为1.74%。  相似文献   

10.
正推动空间信息走廊,为"一带一路"沿线国家提供服务和支持;联合东盟国家相关高校和科研机构,共同开展空间信息前沿科学研究,利用亚太空间合作组织教育培训中心等机构,定期举办空间信息培训班,促进航天人才交流与培训。在探月方面,2019年中国将发射长征五号发射器,实现采样返回。中国首次火星探测任务在2020年实施,2021年首个火星探测任务将抵达,在深空探测领域还将实施三次升空探测任务,包括采样、小行星探测等。在载人航天工程方面,在已经实现载人航天获得空间实验室任务的基础上,2022年将建成长期有人照料的空间站,邀请各国参与各项相关研究。  相似文献   

11.
Explosive welding technique is widely used in many industries. This technique is useful to weld different kinds of metal alloys that are not easily welded by any other welding methods. Interlayer plays an important role to improve the welding quality and control energy loss during the collision process. In this paper, the Ti6Al4V plate was welded with a copper plate in the presence of a commercially pure titanium interlayer. Microstructure details of welded composite plate were observed through optical and scanning electron microscope. Interlayer-base plate interface morphology showed a wavy structure with solid melted regions inside the vortices. Moreover, the energy dispersive spectroscopy analysis in the interlayer-base interface reveals that there are some identified regions of different kinds of chemical equilibrium phases of Cu–Ti, i.e. CuTi, Cu2Ti, CuTi2, Cu4Ti, etc. To study the mechanical properties of composite plates, mechanical tests were conducted, including the tensile test, bending test, shear test and Vickers hardness test. Numerical simulation of explosive welding process was performed with coupled Smooth Particle Hydrodynamic method, Euler and Arbitrary Lagrangian-Eulerian method. The multi-physics process of explosive welding, including detonation, jetting and interface morphology, was observed with simulation. Moreover, simulated plastic strain, temperature and pressure profiles were analysed to understand the welding conditions. Simulated results show that the interlayer base plate interface was created due to the high plastic deformation and localized melting of the parent plates. At the collision point, both alloys behave like fluids, resulting in the formation of a wavy morphology with vortices, which is in good agreement with the experimental results.  相似文献   

12.
917低磁钢与铝合金爆炸焊接复合实验研究   总被引:4,自引:0,他引:4  
采用异种金属爆炸焊接复合技术 ,研制了 91 7低磁钢与LF5、LF2 1、LF1 1等铝合金的爆炸焊接复合板 ,并对该铝—钢复合板力学性能进行了实验研究 ,对复合界面进行了金相分析 .实验结果表明 ,该铝—钢复合板复合界面物理结合良好 ,其抗剪和抗弯强度满足实船使用要求  相似文献   

13.
通过设计爆炸焊接试验复合了铝合金-纯铝-钢爆炸复合板,对其界面形态、显微硬度及力学性能进行了研究。结果表明,铝合金-纯铝界面纯规则正弦波形,纯铝-钢复合板界面波形较小,铝合金-纯铝-钢复合板的界面剪切强度在75 MPa以上,爆炸复合过程中,纯铝与钢界面生成了金属间化合物,其界面处基体金属发生强烈的塑性变形。复合板变形及组织变化的结果造成复合板界面处的显微硬度最高,随着距界面距离的增加,两侧基体金属的硬度逐渐降低。  相似文献   

14.
The explosive reaction degree and protection from explosions are concerns in the military field.In this work,the reaction degree of the composition B explosive was investigated experimentally.Multi-layered compound structures were used as barriers to weaken the blast loads.A comprehensive experiment using a high-speed camera and image processing techniques,side witness plates,and bottom witness plates was presented.Using the experimental fragment velocities,fragment piercing patterns,and damage characteristics,the reaction degree of the explosive impeded by different multi-layered com-pound structures could be precisely differentiated.Reaction parameters of the explosive obstructed by compound structures were obtained by theoretical analysis and numerical simulations.Unlike the common method in which the explosive reaction degree is only distinguished based on the initial pressure amplitude transmitted into the explosive,a following shock wave reflected from the side steel casing was also considered.Different detonation growth paths in the explosive formed.Therefore,all these shock wave propagation characteristics must be considered to analyze the explosive response impeded by compound structures.  相似文献   

15.
炸药热安定性的快速评定方法   总被引:2,自引:0,他引:2  
本文分析了量气法和热分析法评定炸药热安定性的问题,提出把由一条DSC曲线测得的热分解动力学参数引入热平衡方程,以数值模拟方法计算出炸药在一定环境温度下的热爆炸延滞期,并据此判别炸药热安定性的观点和方法。经实验验证,该方法快速、准确。  相似文献   

16.
为了探索焊接工艺对熔化极气体保护堆焊快速成形零件组织性能的影响,根据材料热物理性能参数以及相变潜热与温度的非线性关系,建立了熔化极气体保护堆焊成形过程的数学模型和有限元模型,利用ANSYS软件的APDL语言编写程序,实现了高斯移动热源载荷下的熔化极气体保护堆焊成形温度场计算,分析对比了不同焊接工艺对焊缝区温度场热循环的影响。结果表明:在其他因素一定的条件下,热输入和焊接速度对焊缝区热循环影响显著,而基板厚度对其影响较小;选择厚度约为16mm的基板,采用小于120×20J的热输入和大于10mm/s的焊接速度有望成形出性能优良的零件。  相似文献   

17.
《防务技术》2022,18(9):1538-1545
3-nitro-1,2,4-tri-azol-5-one (NTO) is a high energy insensitive explosive. To study the shock initiation process of NTO-based polymer bonded explosive JEOL-1 (32%octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 32% NTO, 28% Al and 8% binder system), the cylinder test, the gap experiments and numerical simulation were carried out. Firstly, we got the detonation velocity (7746 m/s) and the parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for detonation product by cylinder test and numerical simulation. Secondly, the Hugoniot curve of unreacted explosive for JEOL-1 was obtained calculating the data of pressure and time at different Lagrangian positions. Then the JWL EOS of unreacted explosive was obtained by utilizing the Hugoniot curve as the reference curve. Finally, we got the pressure growth history of JEOL-1 under shock wave stimulation and the parameters of the ignition and growth reaction rate equation were obtained by the pressure-time curves measured by the shock-initiation gap experiment and numerical simulation. The determined trinomial ignition and growth model (IG model) parameters can be applied to subsequently simulation analysis and design of insensitive ammunition with NTO-based polymer bonded explosive.  相似文献   

18.
为获得最佳铝热焊接工艺参数,对拉伸试件进行了正交试验和二次通用旋转组合试验,研究预热温度、加压时间和预留焊缝3因素对接头强度的影响,进而寻求一组使焊接接头强韧性最高的焊接工艺参数组合。利用电子显微镜等对试件拉伸断口进行了分析,通过对比2种开始加压时间下试件的显微组织和性能,研究了这2种方法对接头强韧性的影响。结果表明:采用设计的铝热焊接试验装置和优化出的随焊加压致密化工艺参数,可使焊接接头获得大变形组织,从而获得高的强度和韧性。该项研究可为提高铝热焊接质量提供基础数据。  相似文献   

19.
为了增强爆炸零门在应用中的稳定性,降低对沟槽装药装填工艺的要求,以间隙零门为研究对象,提出了以导爆索代替部分沟槽装药结构的方法。对具有不同尺寸参数的导爆索、沟槽装药以及零门间隙进行组合试验,以期通过试验得到装填工艺简单且控制通道对信号通道作用稳定的装填物质组合。研究结果表明,通过对由导爆索构成的爆炸零门进行合理的参数配置,能够实现在提升零门装置稳定性的同时又保证其可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号