首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了研究直通式电磁处理技术在降低铁磁构件的残余应力中的应用,设计了焊接残余应力电磁处理实验并对处理前后的残余应力进行了测试,测试结果表明:直通式电磁处理技术能够在一定程度上降低残余应力。同时,分析了相应的处理机理,为提高船舶、武器等的焊接工艺和降低残余应力提供理论基础和技术支撑。  相似文献   

2.
舰炮大型铸铝件断裂残余应力分析   总被引:1,自引:0,他引:1  
采用盲孔法测试某型舰炮大型铸铝件残余应力,结果分析表明原结构中残余应力较大,部分位置残余应力超过材料屈服极限是其断裂的根本原因.通过工艺改进后,构件残余应力幅值大幅降低,满足工程要求.  相似文献   

3.
C/SiC复合材料残余应力的电火花小孔法测定研究   总被引:1,自引:0,他引:1  
进行了C/SiC复合材料残余应力的小孔法表征.基于现有小孔法的不足以及材料的较好电导率,提出了电火花打孔法的残余应力测量方法,建立了相应的残余应力测量流程.进行了不同平整表面样品的残余应力测量.结果表明电火花打孔法具有较好的区分性,也表明C/SiC复合材料具有较小的本征残余应力和机加工应力,这说明:C/SiC复合材料作为反射镜材料具有很好的面形稳定性的优势.  相似文献   

4.
假定膜内的残余拉应力足以使膜发生开裂,利用膜/基材料中含弹性界面层的剪滞模型,研究了脆性膜/基材料在残余应力作用下的开裂行为特征,探讨了膜内正应力、膜/基界面切应力的分布规律,获得了膜的裂纹密度与残余应力大小之间的解析表达式。在裂纹密度、材料的力学和几何参数确定的情况下,该解析表达式可以用来评估残余应力的大小。最后,分析了膜的裂纹密度与残余应力、膜的厚度、弹性模量、断裂强度以及界面层的切变模量之间的内在关联,绘出了这些参数影响膜裂纹密度的变化曲线。  相似文献   

5.
采用表面形貌技术对陶瓷磨削表面残余应力进行测试研究,对表面粗糙度曲线经过数据截取、滤波以及规范化处理后可得到表面挠度曲线,认为,此方法与X射线衍射法相比测试结果较接近,是测试残余应力的有效方法;其数据处理过程是保证测试精度的关键;挠度变化是个渐变的过程。  相似文献   

6.
在激光冲击强化过程中,光斑边界处会产生表面稀疏波,并向光斑中心传播、汇聚,使中心区域材料发生反向塑性变形,造成光斑中心区域残余压应力缺失,从而形成材料表面"残余应力洞"现象。利用ABAQUS有限元软件进行了圆形高斯光斑的激光冲击强化数值模拟,讨论了不同材料和模型尺寸、激光冲击参数等因素对"残余应力洞"的影响规律。结果表明,随着冲击波峰值压力、冲击波作用时间、冲击次数的增加,"残余应力洞"现象随之加剧;而随着材料动态弹性极限、光斑大小、冲击波上升时间、光斑搭接率的增加,"残余应力洞"现象则会随之减弱。该研究可为后期激光冲击强化光斑光学整形技术的应用,以及基于残余应力场优化的工艺设计提供依据。  相似文献   

7.
<正>采用真空电子束焊接不等厚TC4钛环,焊后对接头进行整体退火、电子束局部退火、不退火方式获得3个接头。采用X射线测残余应力、通过拉伸、弯曲试验以及光学显微镜对焊接接头组织和性能进行研究。结果表明:焊后局部退火与整体退火能降低接头残余应力且使接头区域残余应力变化稳定,其作用效果相当;真空电子束局部退火能细化焊缝针状组织,改善热影响区组织。三种状态下接头都具有较高的抗拉强度并表现出良好的弯曲性能。在无法进行整  相似文献   

8.
B4C/装甲钢钎焊接头的残余应力是影响其性能的主要因素。通过与散置钎料方法的比较,确定了利用金属网降低残余应力的方法。分析了金属网的材质和尺寸对网状分割效果的影响,利用Al-Cu相图确定了金属网材质;给出了确定网格尺寸的主要考虑因素,即有效黏结面积、应力峰值和焊缝间隙。  相似文献   

9.
焊接接头匹配性研究现状   总被引:2,自引:0,他引:2  
综述了焊接接头匹配性的研究现状,包括匹配性概念及其影响因素、焊接接头匹配性设计原则、不同接头及载荷下的强度匹配性影响、强度匹配性对焊接接头断裂韧性的影响、强度匹配性与焊接残余应力.  相似文献   

10.
利用线弹簧模型求解对接厚板表面裂纹的残余应力强度因子。基于Reissner板理论和连续分布位错思想,将对接厚板表面裂纹问题归结为一组Cauchy型奇异积分方程,并采用Gauss-Chebyshev方法给出了奇异积分方程的数值结果,并与有限元解进行比较,计算结果表明:用线弹簧模型解决含残余应力表面裂纹问题不仅是合理可行的,而且是一种简单方便的方法,便于工程实际应用。  相似文献   

11.
《防务技术》2015,11(3)
Aluminium alloy AA2219 is a high strength alloy belonging to 2000 series. It has been widely used for aerospace applications, especially for construction of cryogenic fuel tank. However, arc welding of AA2219 material is very critical. The major problems that arise in arc welding of AA2219 are the adverse development of residual stresses and the re-distribution as well as dissolution of copper rich phase in the weld joint.These effects increase with increase in heat input. Thus, special attention was taken to especially thick section welding of AA2219-T87 aluminium alloy. Hence, the present work describes the 25 mm-thick AA2219-T87 aluminium alloy plate butt welded by GTAW and GMAW processes using multi-pass welding procedure in double V groove design. The transverse shrinkage, conventional mechanical and metallurgical properties of both the locations on weld joints were studied. It is observed that the fair copper rich cellular(CRC) network is on Side-A of both the weldments. Further, it is noticed that, the severity of weld thermal cycle near to the fusion line of HAZ is reduced due to low heat input in GTAW process which results in non dissolution of copper rich phase. Based on the mechanical and metallurgical properties it is inferred that GTAW process is used to improve the aforementioned characteristics of weld joints in comparison to GMAW process.  相似文献   

12.
《防务技术》2015,11(3)
The transverse shrinkage, mechanical and metallurgical properties of AISI: 310 S ASS weld joints prepared by P-GMAW and DP-GMAW processes were investigated. It was observed that the use of the DP-GMAW process improves the aforementioned characteristics in comparison to that of the P-GMAW process. The enhanced quality of weld joints obtained with DP-GMAW process is primarily due to the combined effect of pulsed current and thermal pulsation(low frequency pulse). During the thermal pulsation period, there is a fluctuation of wire feed rate,which results in the further increase in welding current and the decrease in arc voltage. Because of this synchronization between welding current and arc voltage during the period of low frequency pulse, the DP-GMAW deposit introduces comparatively more thermal shock compared to the P-GMAW deposit, thereby reducing the heat input and improves the properties of weld joints.  相似文献   

13.
《防务技术》2019,15(3):353-362
AA5059 is one of the high strength armor grade aluminium alloy that finds its applications in the military vehicles due to the higher resistance against the armor piercing (AP) threats. This study aimed at finding the best suitable process among the fusion welding processes such as gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) by evaluating the tensile properties of AA5059 aluminium alloy joints. The fracture path was identified by mapping the low hardness distribution profile (LHDP) across the weld cross section under tensile loading. Optical and scanning electron microscopies were used to characterize the microstructural features of the welded joints at various zones. It is evident from the results that GTAW joints showed superior tensile properties compared to GMAW joints and this is primarily owing to the presence of finer grains in the weld metal zone (WMZ) and narrow heat-affected zone (HAZ). The lower heat input associated with the GTAW process effectively reduced the size of the WMZ and HAZ compared to GMAW process. Lower heat input of GTAW process results in faster cooling rate which hinders the grain growth and reduces the evaporation of magnesium in weld metal compared to GMAW joints. The fracture surface of GTAW joint consists of more dimples than GMAW joints which is an indication that the GTAW joint possess improved ductility than GMAW joint.  相似文献   

14.
《防务技术》2015,11(3)
The difficulty in fabricating the large size or complex shape limits the application of ZrB2-SiC composites. Joining them by fusion welding without or with preheating, controlled cooling under protective gas shield leads to thermal shock failure or porosity at the weld interface. In the present work, a filler material of(ZrB2-SiC-B4C-YAG) composite with oxidation resistance and thermal shock resistance was produced in the form of welding wire. Using the filler, gas tungsten arc welding(GTAW) was performed without employing preheating, post controlled cooling and extraneous protective gas shield to join hot pressed ZrB2-SiC(ZS), and pressureless sintered ZrB2-SiC-B4C-YAG(ZSBY) composites to themselves. The fusion welding resulted in cracking and non-uniform joining without any filler material. The weld interfaces of the composites were very clean and coherent. The Vickers micro-hardness across the weld interface was found to increase due to the increase in the volume % of both SiC and B4C in the filler material. The shear strength of the weld was about 50% of the flextural strength of the parent composite.  相似文献   

15.
《防务技术》2014,10(1):47-59
Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel (LHF) consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding (SMAW) and Flux cored arc welding (FCAW) were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.  相似文献   

16.
High nitrogen stainless steel with nitrogen content of 0.75%was welded by gas metal arc welding with Ar—N2-O2 ternary shielding gas. The effect of the ternary shielding gas on the retention and improvement of nitrogen content in the weld was identified. Surfacing test was conducted first to compare the ability of O2 and CO2 in prompting nitrogen dissolution. The nitrogen content of the surfacing metal with O2 is slightly higher than CO2. And then Ar—N2-O2 shielding gas was applied to weld high nitrogen stainless steel. After using N2-containing shielding gas, the nitrogen content of the weld was improved by 0.1 wt%. As N2 continued to increase, the increment of nitrogen content was not obvious, but the ferrite decreased from the top to the bottom. When the proportion of N2 reached 20%, a full austenitic weld was obtained and the tensile strength was improved by 8.7%. Combined with the results of surfacing test and welding test, it is concluded that the main effect of N2 is to inhibit the escape of nitrogen and suppress the ni-trogen diffusion from bottom to the top in the molten pool.  相似文献   

17.
《防务技术》2015,11(3)
Magnetically impelled arc butt(MIAB) welding is a pressure welding process used for joining of pipes and tubes with an external magnetic field affecting arc rotation along the tube circumference. In this work, MIAB welding of low alloy steel(T11) tubes were carried out to study the microstructural changes occurring in thermo-mechanically affected zone(TMAZ). To qualify the process for the welding applications where pressure could be up to 300 bar, the MIAB welds are studied with variations of arc current and arc rotation time. It is found that TMAZ shows higher hardness than that in base metal and displays higher weld tensile strength and ductility due to bainitic transformation. The effect of arc current on the weld interface is also detailed and is found to be defect free at higher values of arc currents. The results reveal that MIAB welded samples exhibits good structural property correlation for high pressure applications with an added benefit of enhanced productivity at lower cost.The study will enable the use of MIAB welding for high pressure applications in power and defence sectors.  相似文献   

18.
利用热电偶测试了无电焊接过程中同一厚度钢板不同位置、不同厚度钢板同一位置处的焊接热循环曲线,探讨了无电焊接热循环规律及焊接母材厚度对无电焊接热循环的影响。研究表明:无电焊接时,焊件上不同位置点的热循环曲线与电弧焊基本相似。但相较而言,无电焊接在加热阶段的升温速度与冷却阶段的降温速度均显著小于电弧焊。无电焊接过程中,焊件上离焊缝中心线越近,其升温速度越大,峰值温度越高,冷却速度也越大,这一变化规律与电弧焊时完全一致。无电焊接时,焊接热量沿横向的传热速度远大于其沿纵向的传热速度,这使得焊件厚度对无电焊接的影响较为显著,也是焊件厚度增加将导致焊接难度显著增大的根本原因。  相似文献   

19.
《防务技术》2015,11(3)
Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding(FSW). In this investigation, a comparative evaluation of mechanical(tensile, impact,hardness) properties and microstructural features of shielded metal arc(SMA), gas metal arc(GMA) and friction stir welded(FSW) naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.  相似文献   

20.
燃烧型焊条焊接A3钢的研究   总被引:2,自引:0,他引:2  
基于燃烧合成技术的燃烧机理,结合焊接母材的材质,制备可用于手工施焊的燃烧型焊条焊接A3钢。对焊接试件进行力学性能测试和金相分析,结果表明:焊接试件的结合方式为冶金结合,焊缝合金在细晶强化和弥散强化的作用下,试件的抗拉强度(σb)达到370 MPa,抗弯强度(σf)达到1 100 MPa,成功实现了燃烧型焊条对A3钢的焊接。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号