首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In the absence, to date, of an exact method for solving the linear programming problem with fixed charges, two heuristic methods have been proposed and extensively investigated, computationally, for moderate sized problems. The results indicate that the heuristic methods produce optimal solutions in well over 90 percent of the several hundred problems investigated and very close to optimal (a few percent) in the remaining cases. Hence it should be of practical significance to practitioners in the field.  相似文献   

2.
The fixed charge problem is a nonlinear programming problem of practical interest in business and industry. Yet, until now no computationally feasible exact method of solution for large problems had been developed. In this paper an exact algorithm is presented which is computationally feasible for large problems. The algorithm is based upon a branch and bound approach, with the additional feature that the amount of computer storage required remains constant throughout (for a problem of any given size). Also presented are three suboptimal heuristic algorithms which are of interest because, although they do not guarantee that the true optimal solution will be found, they usually yield very good solutions and are extremely rapid techniques. Computational results are described for several of the heuristic methods and for the branch and bound algorithm.  相似文献   

3.
Location of both public and private facilities has become an important consideration in today's society. Progress in solution of location problems has been impeded by difficulty of the fixed charge problem and the lack of an efficient algorithm for large problems. In this paper a method is developed for solving large-scale public location problems. An implicit enumeration scheme with an imbedded transportation algorithm forms the basis of the solution technique.  相似文献   

4.
In this article, we study item shuffling (IS) problems arising in the logistics system of steel production. An IS problem here is to optimize shuffling operations needed in retrieving a sequence of steel items from a warehouse served by a crane. There are two types of such problems, plate shuffling problems (PSP) and coil shuffling problems (CSP), considering the item shapes. The PSP is modeled as a container storage location assignment problem. For CSP, a novel linear integer programming model is formulated considering the practical stacking and shuffling features. Several valid inequalities are constructed to accelerate the solving of the models. Some properties of optimal solutions of PSP and CSP are also derived. Because of the strong NP‐hardness of the problems, we consider some special cases of them and propose polynomial time algorithms to obtain optimal solutions for these cases. A greedy heuristic is proposed to solve the general problems and its worst‐case performances on both PSP and CSP are analyzed. A tabu search (TS) method with a tabu list of variable length is proposed to further improve the heuristic solutions. Without considering the crane traveling distance, we then construct a rolling variable horizon heuristic for the problems. Numerical experiments show that the proposed heuristic algorithms and the TS method are effective. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

5.
The loading problem involves the optimal allocation of n objects, each having a specified weight and value, to m boxes, each of specified capacity. While special cases of these problems can be solved with relative ease, the general problem having variable item weights and box sizes can become very difficult to solve. This paper presents a heuristic procedure for solving large loading problems of the more general type. The procedure uses a surrogate procedure for reducing the original problem to a simpler knapsack problem, the solution of which is then employed in searching for feasible solutions to the original problem. The procedure is easy to apply, and is capable of identifying optimal solutions if they are found.  相似文献   

6.
This article deals with supply chain systems in which lateral transshipments are allowed. For a system with two retailers facing stochastic demand, we relax the assumption of negligible fixed transshipment costs, thus, extending existing results for the single‐item case and introducing a new model with multiple items. The goal is to determine optimal transshipment and replenishment policies, such that the total centralized expected profit of both retailers is maximized. For the single‐item problem with fixed transshipment costs, we develop optimality conditions, analyze the expected profit function, and identify the optimal solution. We extend our analysis to multiple items with joint fixed transshipment costs, a problem that has not been investigated previously in the literature, and show how the optimality conditions may be extended for any number of items. Due to the complexity involved in solving these conditions, we suggest a simple heuristic based on the single‐item results. Finally, we conduct a numerical study that provides managerial insights on the solutions obtained in various settings and demonstrates that the suggested heuristic performs very well. © 2014 Wiley Periodicals, Inc. Naval Research Logistics, 61: 637–664, 2014  相似文献   

7.
Numerous procedures have been suggested for solving fixed charge problems. Among these are branch-and-bound methods, cutting plane methods, and vertex ranking methods. In all of these previous approaches, the procedure depends heavily on the continuous costs to terminate the search for the optimal solution. In this paper, we present a new branch-and-bound algorithm that calculates bounds separately on the sum of fixed costs and on the continuous objective value. Computational experience is shown for various standard test problems as well as for randomly generated problems. These test results are compared to previous procedures as well as to a mixed integer code. These comparisons appear promising.  相似文献   

8.
运载火箭最优上升轨道设计问题是一类终端时刻未定、终端约束苛刻的最优控制问题,经典算法求解这类问题时收敛性差、局部收敛等问题表现得比较突出。针对上述问题,将具有良好全局收敛性的遗传算法应用到运载火箭最优上升段设计问题求解中,为了提高遗传算法的收敛速度和克服早熟问题,结合遗传算法和单纯型算法的优点,设计了两种混合遗传算法。计算结果表明,所设计的混合遗传算法是求解复杂问题的有效全局优化方法,可以成功地解决一类终端时刻可变飞行器最优控制问题。  相似文献   

9.
In many decision-making situations, each activity that can be undertaken may have associated with it both a fixed and a variable cost. Recently, we have encountered serveral practical problems in which the fixed cost of undertaking an activity depends upon which other activities are also undertaken. To our knowledge, no existing optimization model can accomodate such a fixed cost structure. To do so, we have therefore developed a new model called the interactive fixed charge linear programming problem (IFCLP). In this paper we present and motivate problem (IFCLP), study some of its characteristics, and present a finite branch and bound algorithm for solving it. We also discuss the main properties of this algorithm.  相似文献   

10.
A well‐studied problem in airline revenue management is the optimal allocation of seat inventory among different fare‐classes, given a capacity for the flight and a demand distribution for each class. In practice, capacity on a flight does not have to be fixed; airlines can exercise some flexibility on the supply side by swapping aircraft of different capacities between flights as partial booking information is gathered. This provides the airline with the capability to more effectively match their supply and demand. In this paper, we study the seat inventory control problem considering the aircraft swapping option. For theoretical and practical purposes, we restrict our attention to the class of booking limit policies. Our analytical results demonstrate that booking limits considering the swapping option can be considerably different from those under fixed capacity. We also show that principles on the relationship between the optimal booking limits and demand characteristics (size and risk) developed for the fixed‐capacity problem no longer hold when swapping is an option. We develop new principles and insights on how demand characteristics affect the optimal booking limits under the swapping possibility. We also develop an easy to implement heuristic for determining the booking limits under the swapping option and show, through a numerical study, that the heuristic generates revenues close to those under the optimal booking limits. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

11.
We study a generalization of the weighted set covering problem where every element needs to be covered multiple times. When no set contains more than two elements, we can solve the problem in polynomial time by solving a corresponding weighted perfect b‐matching problem. In general, we may use a polynomial‐time greedy heuristic similar to the one for the classical weighted set covering problem studied by D.S. Johnson [Approximation algorithms for combinatorial problems, J Comput Syst Sci 9 (1974), 256–278], L. Lovasz [On the ratio of optimal integral and fractional covers, Discrete Math 13 (1975), 383–390], and V. Chvatal [A greedy heuristic for the set‐covering problem, Math Oper Res 4(3) (1979), 233–235] to get an approximate solution for the problem. We find a worst‐case bound for the heuristic similar to that for the classical problem. In addition, we introduce a general type of probability distribution for the population of the problem instances and prove that the greedy heuristic is asymptotically optimal for instances drawn from such a distribution. We also conduct computational studies to compare solutions resulting from running the heuristic and from running the commercial integer programming solver CPLEX on problem instances drawn from a more specific type of distribution. The results clearly exemplify benefits of using the greedy heuristic when problem instances are large. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

12.
The pure fixed charge transportation problem (PFCTP) is a variation of the fixed charge transportation problem (FCTP) in which there are only fixed costs to be incurred when a route is opened. We present in this paper a direct search procedure using the LIFO decision rule for branching. This procedure is enhanced by the use of 0–1 knapsack problems which determine bounds on partial solutions. Computational results are presented and discussed.  相似文献   

13.
This paper examines the (n, m) scheduling problem with n operations distributed among m machines. An algorithm for solving this problem is presented and, gives a good heuristic solution on a wide class of problems. Computational results are reported which demonstrate the efficiency of this approach.  相似文献   

14.
This paper studies a scheduling problem arising in a beef distribution system where pallets of various types of beef products in the warehouse are first depalletized and then individual cases are loaded via conveyors to the trucks which deliver beef products to various customers. Given each customer's demand for each type of beef, the problem is to find a depalletizing and truck loading schedule that fills all the demands at a minimum total cost. We first show that the general problem where there are multiple trucks and each truck covers multiple customers is strongly NP‐hard. Then we propose polynomial‐time algorithms for the case where there are multiple trucks, each covering only one customer, and the case where there is only one truck covering multiple customers. We also develop an optimal dynamic programming algorithm and a heuristic for solving the general problem. By comparing to the optimal solutions generated by the dynamic programming algorithm, the heuristic is shown to be capable of generating near optimal solutions quickly. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

15.
In this study we present an integer programming model for determining an optimal inbound consolidation strategy for a purchasing manager who receives items from several suppliers. The model considers multiple suppliers with limited capacity, transportation economies, and quantity discounts. We propose an integrated branch and bound procedure for solving the model. This procedure, applied to a Lagrangean dual at every node of the search tree, combines the subgradient method with a primal heuristic that interact to change the Lagrangean multipliers and tighten the upper and lower bounds. An enhancement to the branch and bound procedure is developed using surrogate constraints, which is found to be beneficial for solving large problems. We report computational results for a variety of problems, with as many as 70,200 variables and 3665 constraints. Computational testing indicates that our procedure is significantly faster than the general purpose integer programming code OSL. A regression analysis is performed to determine the most significant parameters of our model. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 579–598, 1998  相似文献   

16.
We introduce an optimal stopping problem for selling an asset when the fixed but unknown distribution of successive offers is from one of n possible distributions. The initial probabilities as to which is the true distribution are given and updated in a Bayesian manner as the successive offers are observed. After receiving an offer, the seller has to decide whether to accept the offer or continue to observe the next offer. Each time an offer is observed a fixed cost is incurred. We consider both the cases where recalling a past offer is allowed and where it is not allowed. For each case, a dynamic programming model and some heuristic policies are presented. Using simulation, the performances of the heuristic methods are evaluated and upper bounds on the optimal expected return are obtained. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

17.
To solve linear fixed charge problems with Murty's vertex ranking algorithm, one uses a simplex algorithm and a procedure to determine the vertices adjacent to a given vertex. In solving fixed charge transportation problems, the simplex algorithm simplifies to the stepping-stone algorithm. To find adjacent vertices on transportation polytopes, we present a procedure which is a simplification of a more general procedure for arbitrary polytopes.  相似文献   

18.
In hinterland container transportation the use of barges is getting more and more important. We propose a real‐life operational planning problem model from an inland terminal operating company, in which the number of containers shipped per barge is maximized and the number of terminals visited per barge is minimized. This problem is solved with an integer linear program (ILP), yielding strong cost reductions, about 20%, compared to the method used currently in practice. Besides, we develop a heuristic that solves the ILP in two stages. First, it decides for each barge which terminals to visit and second it assigns containers to the barges. This heuristic produces almost always optimal solutions and otherwise near‐optimal solutions. Moreover, the heuristic runs much faster than the ILP, especially for large‐sized instances.  相似文献   

19.
Graph association is the problem of merging many graphs that collectively describe a set of possibly repetitive entities and relationships into a single graph that contains unique entities and relationships. As a form of data association, graph association can be used to identify when two sensors are observing the same object so information from both sensors can be combined and analyzed in a meaningful and consistent way. Graph association between two graphs is related to the problem of graph matching, and between multiple graphs it is related to the common labeling of a graph set (also known as multiple graph matching) problem. This article contribution is to formulate graph association as a binary linear program and introduce a heuristic for solving multiple graph association using a Lagrangian relaxation approach to address issues with between‐graph transitivity requirements. The algorithms are tested on a representative dataset. The developed model formulation was found to accurately solve the graph association problem. Furthermore, the Lagrangian heuristic was found to solve the developed model within 3% of optimal on many problem instances, and found better solutions to large problems than is possible by directly using CPLEX. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

20.
This paper introduces an efficient heuristic procedure for solving a special class of mixed integer programming problem called the capacitated warehouse (plant) location problem. This procedure parallels the work reported earlier in [9] on the uncapacitated warehouse location problem. The procedure can be viewed as tracing a judiciously selected path of the branch and bound tree (from the initial node to the terminal node) to arrive at a candidate solution. A simple backtracking scheme is also incorporated in the procedure to investigate possible improvement in the solution. Computational results on problems found in the literature look quite encouraging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号