首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a ship stowage planning problem where steel coils with known destination ports are to be loaded onto a ship. The coils are to be stowed on the ship in rows. Due to their heavy weight and cylindrical shape, coils can be stowed in at most two levels. Different from stowage problems in previous studies, in this problem there are no fixed positions on the ship for the coils due to their different sizes. At a destination port, if a coil to be unloaded is not at a top position, those blocking it need to be shuffled. In addition, the stability of ship has to be maintained after unloading at each destination port. The objective for the stowage planning problem is to minimize a combination of ship instability throughout the entire voyage, the shuffles needed for unloading at the destination ports, and the dispersion of coils to be unloaded at the same destination port. We formulate the problem as a novel mixed integer linear programming model. Several valid inequalities are derived to help reducing solution time. A tabu search (TS) algorithm is developed for the problem with the initial solution generated using a construction heuristic. To evaluate the proposed TS algorithm, numerical experiments are carried out on problem instances of three different scales by comparing it with a model‐based decomposition heuristic, the classic TS algorithm, the particle swarm optimization algorithm, and the manual method used in practice. The results show that for small problems, the proposed algorithm can generate optimal solutions. For medium and large practical problems, the proposed algorithm outperforms other methods. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 564–581, 2015  相似文献   

2.
In this paper, we study a m‐parallel machine scheduling problem with a non‐crossing constraint motivated by crane scheduling in ports. We decompose the problem to allow time allocations to be determined once crane assignments are known and construct a backtracking search scheme that manipulates domain reduction and pruning strategies. Simple approximation heuristics are developed, one of which guarantees solutions to be at most two times the optimum. For large‐scale problems, a simulated annealing heuristic that uses random neighborhood generation is provided. Computational experiments are conducted to test the algorithms. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   

3.
A network with traffic between nodes is known. The links of the network can be designed either as two‐way links or as one‐way links in either direction. The problem is to find the best configuration of the network which minimizes total travel time for all users. Branch and bound optimal algorithms are practical only for small networks (up to 15 nodes). Effective simulated annealing and genetic algorithms are proposed for the solution of larger problems. Both the simulated annealing and the genetic algorithms propose innovative approaches. These innovative ideas can be used in the implementation of these heuristic algorithms for other problems as well. Additional tabu search iterations are applied on the best results obtained by these two procedures. The special genetic algorithm was found to be the best for solving a set of test problems. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 449–463, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10026  相似文献   

4.
In this work, we examine port crane scheduling with spatial and separation constraints. Although common to most port operations, these constraints have not been previously studied. We assume that cranes cannot cross, there is a minimum distance between cranes and jobs cannot be done simultaneously. The objective is to find a crane‐to‐job matching which maximizes throughput under these constraints. We provide dynamic programming algorithms, a probabilistic tabu search, and a squeaky wheel optimization heuristic for solution. Experiments show the heuristics perform well compared with optimal solutions obtained by CPLEX for small scale instances where a squeaky wheel optimization with local search approach gives good results within short times. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

5.
The importance of subset selection in multiple regression has been recognized for more than 40 years and, not surprisingly, a variety of exact and heuristic procedures have been proposed for choosing subsets of variables. In the case of polynomial regression, the subset selection problem is complicated by two issues: (1) the substantial growth in the number of candidate predictors, and (2) the desire to obtain hierarchically well‐formulated subsets that facilitate proper interpretation of the regression parameter estimates. The first of these issues creates the need for heuristic methods that can provide solutions in reasonable computation time; whereas the second requires innovative neighborhood search approaches that accommodate the hierarchical constraints. We developed tabu search and variable neighborhood search heuristics for subset selection in polynomial regression. These heuristics are applied to a classic data set from the literature and, subsequently, evaluated in a simulation study using synthetic data sets. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

6.
The loading problem involves the optimal allocation of n objects, each having a specified weight and value, to m boxes, each of specified capacity. While special cases of these problems can be solved with relative ease, the general problem having variable item weights and box sizes can become very difficult to solve. This paper presents a heuristic procedure for solving large loading problems of the more general type. The procedure uses a surrogate procedure for reducing the original problem to a simpler knapsack problem, the solution of which is then employed in searching for feasible solutions to the original problem. The procedure is easy to apply, and is capable of identifying optimal solutions if they are found.  相似文献   

7.
Motivated by some practical applications, we study a new integrated loading and transportation scheduling problem. Given a set of jobs, a single crane is available to load jobs, one by one, onto semitrailers with a given capacity. Loaded semitrailers are assigned to tractors for transportation tasks. Subject to limited resources (crane, semitrailers, and tractors), the problem is to determine (1) an assignment of jobs to semitrailers for loading tasks, (2) a sequence for the crane to load jobs onto semitrailers, (3) an assignment of loaded semitrailers to tractors for transportation tasks, and (4) a transportation schedule of assigned tractors such that the completion time of the last transportation task is minimized. We first formulate the problem as a mixed integer linear programming model (MILPM) and prove that the problem is strongly NP‐hard. Then, optimality properties are provided which are useful in establishing an improved MILPM and designing solution algorithms. We develop a constructive heuristic, two LP‐based heuristics, and a recovering beam search heuristic to solve this problem. An improved procedure for solutions by heuristics is also presented. Furthermore, two branch‐and‐bound (B&B) algorithms with two different lower bounds are developed to solve the problem to optimality. Finally, computational experiments using both real data and randomly generated data demonstrate that our heuristics are highly efficient and effective. In terms of computational time and the number of instances solved to optimality in a time limit, the B&B algorithms are better than solving the MILPM. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 416–433, 2015  相似文献   

8.
This article considers the preventive flow interception problem (FIP) on a network. Given a directed network with known origin‐destination path flows, each generating a certain amount of risk, the preventive FIP consists of optimally locating m facilities on the network in order to maximize the total risk reduction. A greedy search heuristic as well as several variants of an ascent search heuristic and of a tabu search heuristic are presented for the FIP. Computational results indicate that the best versions of the latter heuristics consistently produce optimal or near optimal solutions on test problems. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 287–303, 2000  相似文献   

9.
Minimum cardinality set covering problems (MCSCP) tend to be more difficult to solve than weighted set covering problems because the cost or weight associated with each variable is the same. Since MCSCP is NP-complete, large problem instances are commonly solved using some form of a greedy heuristic. In this paper hybrid algorithms are developed and tested against two common forms of the greedy heuristic. Although all the algorithms tested have the same worst case bounds provided by Ho [7], empirical results for 60 large randomly generated problems indicate that one algorithm performed better than the others.  相似文献   

10.
探讨了无人飞行器(UAV)编队的任务分配问题。任务分配是UAV协同控制的基础,其解是任务区域内各任务的一个排列。求解UAV任务分配问题的有效方法是能在合理的计算时间内找到近似最优解的启发式算法。用对称群描述UAV任务分配的搜索空间,基于右乘运算构造搜索邻域。仿真结果验证了群论禁忌搜索算法的有效性。  相似文献   

11.
根据区域目标的侦察需求,研究了面向区域目标的多星调度问题。分析了调度问题中活动收益不确定特征,讨论了活动收益的上下界。针对收益不确定的特点,设计了影响力指标用于评估活动对调度方案的影响。基于活动影响力与执行时间设计了一种带局部诱导的禁忌搜索算法,采用分层次的、变评价函数机制引导求解过程趋向多目标优化,在优先提高覆盖率的同时兼顾减少资源消耗。最后,以算例验证了算法的有效性,并通过方案比较说明算法具有较好的寻优能力。  相似文献   

12.
The fixed charge problem is a nonlinear programming problem of practical interest in business and industry. Yet, until now no computationally feasible exact method of solution for large problems had been developed. In this paper an exact algorithm is presented which is computationally feasible for large problems. The algorithm is based upon a branch and bound approach, with the additional feature that the amount of computer storage required remains constant throughout (for a problem of any given size). Also presented are three suboptimal heuristic algorithms which are of interest because, although they do not guarantee that the true optimal solution will be found, they usually yield very good solutions and are extremely rapid techniques. Computational results are described for several of the heuristic methods and for the branch and bound algorithm.  相似文献   

13.
A heuristic for 0–1 integer programming is proposed that features a specific rule for breaking ties that occur when attempting to determine a variable to set to 1 during a given iteration. It is tested on a large number of small- to moderate-sized randomly generated generalized set-packing models. Solutions are compared to those obtained using an existing well-regarded heuristic and to solutions to the linear programming relaxations. Results indicate that the proposed heuristic outperforms the existing heuristic except for models in which the number of constraints is large relative to the number of variables. In this case, it performs on par with the existing heuristic. Results also indicate that use of a specific rule for tie breaking can be very effective, especially for low-density models in which the number of variables is large relative to the number of constraints.  相似文献   

14.
This article describes a multifacility capacity expansion model in which the different facility types represent different quality levels. These facility types are used to satisfy a variety of deterministic demands over a finite number of discrete time periods. Applications for the model can be found in cable sizing problems associated with the planning of communication networks. It is assumed that the cost function associated with expanding the capacity of any facility type is concave, and that a joint set-up cost is incurred in any period in which one or more facilities are expanded. The model is formulated as a network flow problem from which properties associated with optimal solutions are derived. Using these properties, we develop a dynamic programming algorithm that finds optimal solutions for problems with a few facilities, and a heuristic algorithm that finds near-optimal solutions for larger problems. Numerical examples for both algorithms are discussed.  相似文献   

15.
针对时延、路由跳数以及网络资源利率3种约束,结合软件路由器项目,对路由选择算法的网络模型进行了描述和定义,并提出了基于多QoS约束的启发式路由选择算法(H_MCP)。通过在软件路由器上实现和测试,表明该算法具有可行性和启发性。  相似文献   

16.
This article proposes two dual‐ascent algorithms and uses each in combination with a primal drop heuristic embedded within a branch and bound framework to solve the uncapacitated production assembly distribution system (i.e., supply chain) design problem, which is formulated as a mixed integer program. Computational results indicate that one approach, which combines primal drop and dual‐ascent heuristics, can solve instances within reasonable time and prescribes solutions with gaps between the primal and dual solution values that are less than 0.15%, an efficacy suiting it for actual large‐scale applications. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

17.
This article treats the problem of subdividing an area for storing containers such that the workload is evenly shared among the cranes operating the resulting subareas. We consider two crane sets: while noncrossing constraints between cranes of the same set need to be observed, cranes of different sets do not interfere. Such a problem setting is, for instance, relevant for scheduling the (un‐)loading of vessels by parallel quay cranes operating on opposing berths or in container yards with cross‐over cranes. We formalize the resulting optimization problem, prove computational complexity, and present exact and heuristic solution procedures. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

18.
This paper describes an approximate solution method for solving the fixed charge problem. This heuristic approach is applied to a set of test problems to explore the margin of error. The results indicate that the proposed fixed charge simplex algorithm is capable of finding optimal or near optimal solutions to moderate sized fixed charge problems. In the absence of an exact method, this heuristic should prove useful in solving this fundamental nonlinear programming problem.  相似文献   

19.
We consider a generalization of the well‐known generalized assignment problem (GAP) over discrete time periods encompassed within a finite planning horizon. The resulting model, MultiGAP, addresses the assignment of tasks to agents within each time period, with the attendant single‐period assignment costs and agent‐capacity constraint requirements, in conjunction with transition costs arising between any two consecutive periods in which a task is reassigned to a different agent. As is the case for its single‐period antecedent, MultiGAP offers a robust tool for modeling a wide range of capacity planning problems occurring within supply chain management. We provide two formulations for MultiGAP and establish that the second (alternative) formulation provides a tighter bound. We define a Lagrangian relaxation‐based heuristic as well as a branch‐and‐bound algorithm for MultiGAP. Computational experience with the heuristic and branch‐and‐bound algorithm on over 2500 test problems is reported. The Lagrangian heuristic consistently generates high‐quality and in many cases near‐optimal solutions. The branch‐and‐bound algorithm is also seen to constitute an effective means for solving to optimality MultiGAP problems of reasonable size. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

20.
The quay crane scheduling problem consists of scheduling tasks for loading and unloading containers on cranes that are assigned to a vessel for its service. This article introduces a new approach for quay crane scheduling, where the availability of cranes at a vessel is restricted to certain time windows. The problem is of practical relevance, because container terminal operators frequently redeploy cranes among vessels to speed up the service of high‐priority vessels while serving low‐priority vessels casually. This article provides a mathematical formulation of the problem and a tree‐search‐based heuristic solution method. A computational investigation on a large set of test instances is used to evaluate the performance of the heuristic and to identify the impact of differently structured crane time windows on the achievable vessel handling time. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号