首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
基于剩余穿深理论,依据聚能射流对钢靶板侵彻毁伤作用机理,推导出2种等效模型,并结合数值模拟建立了聚能射流侵彻下某舰船装甲钢与603钢靶板的等效关系。结果表明:当舰船钢厚度较小时,舰船钢与603装甲钢的等效厚度比约为1;当舰船钢厚度较大时,两者等效厚度比约为1.13。由此等效关系可给出用于战斗部考核性穿靶试验中相应均质靶板的确定厚度,从而为用603装甲钢靶代替该舰船钢进行聚能射流威力考核试验提供依据,达到了简化、经济、方便、有效的目的。  相似文献   

2.
为探究影响金属射流欧姆加热效应的因素,在被动电磁装甲系统等效电路模型的基础上,根据虚拟源点理论建立金属射流的作用时间模型,进一步明确金属射流在侵彻被动电磁装甲过程中每部分射流微元的作用时间;结合金属射流的比作用量模型,利用Matlab软件对金属射流的电流和比作用量波形随被动电磁装甲系统的电感、电容、电阻和充电电压的变化规律进行数值分析.仿真结果表明:随着系统电感的减小、电阻的减小、电容的增大和充电电压的增大,金属射流比作用量的峰值增大,有利于射流发生电爆炸.  相似文献   

3.
聚能装药战斗部射虚拟试验中,射流穿深对靶板材料模型参数较敏感。为建立较准确实用的射流穿深预测模型,提出一种贝叶斯线性校准方法,建立物理过程真实值、模型预测值和试验测量值间的统计关系,结合有限的试验数据,校准未知模型参数。实例分析表明,该方法可较好地解决包含各种不确定性的大型复杂计算模型的参数校准问题。  相似文献   

4.
《防务技术》2022,18(9):1552-1562
To further explore the damage characteristics and impact response of the shaped charge to the solid rocket engine (SRE) in storage or transportation, protective armor was designed and the shelled charges model (SCM)/SRE with protective armor impacting by shaped charge tests were conducted. Air overpressures at 5 locations and axial acceleration caused by the explosion were measured, and the experimental results were compared with two air overpressure curves of propellant detonation obtained by related scholars. Afterwards, the finite element software AUTODYN was used to simulate the SCM impacted process and SRE detonation results. The penetration process and the formation cause of damage were analyzed. The detonation performance of TNT, reference propellant, and the propellant used in this experiment was compared. The axial acceleration caused by the explosion was also analyzed. By comprehensive comparison, the energy released by the detonation of this propellant is larger, and the HMX or Al particles contained in this propellant are more than the reference propellant, with a TNT equivalent of 1.168–1.196. Finally, advanced protection armor suggestions were proposed based on the theory of woven fabric rubber composite armor (WFRCA).  相似文献   

5.
《防务技术》2015,11(2)
Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.  相似文献   

6.
为解决现行装甲装备裂纹检测手段效率低、输出结果不直观等问题,将超声红外热波检测技术引入装甲装备零部件缺陷鉴定环节。针对装甲板等平板类结构的厚度特点,建立了厚度9~13121m的含微裂纹铝合金平板试件有限元分析模型,通过不同厚度试件微裂纹生热及裂纹面相对运动频谱的对比,揭示了微裂纹生热机理及其与试件厚度之间的关系。最后,通过试验验证了采用有限元分析的可行性。  相似文献   

7.
《防务技术》2022,18(10):1863-1874
The research of LEFP (linear explosive forming projectile) is of great value to the development of new warhead due to its excellent performance. To further improve the damage ability of the shaped charge warhead, a special shell overhanging structure was designed to increase the charge based on the traditional spherical charge, in which case the crushing energy of LEFP could be guaranteed. LS-DYNA was used to simulate different charge structures obtained by changing the number of detonation points, the length of shell platform, the radius of curvature and the thickness of liner. The RSM (response surface model) between the molding parameters of LEFP and the structural parameters of charge was established. Based on RSM model, the structure of shaped charge was optimized by using multi-objective genetic algorithm. Meanwhile, the formation process of jet was analyzed by pulsed X-ray photography. The results show that the velocity, length-diameter ratio and specific kinetic energy of the LEFP were closely related to the structural parameters of the shaped charge. After the optimization of charge structure, the forming effect and penetration ability of LEPP had been significantly improved. The experimental data of jet velocity and length were consistent with the numerical results, which verifies the reliability of the numerical results.  相似文献   

8.
陶瓷基装甲抗枪弹机理研究现状   总被引:4,自引:0,他引:4  
从陶瓷基装甲的特点出发,介绍了其抗弹性能的评定指标,讨论了弹靶撞击过程的划分,重点评述了抗弹机理的研究方法和陶瓷基装甲的耗能机制;并总结了影响陶瓷基装甲抗枪弹性能的4个主要因素:陶瓷厚度、约束条件、弹丸形状和撞击速度.  相似文献   

9.
多层横向运动板对垂直来侵长细杆的挤压、剪切能够使长细杆发生挤压和剪切变形,进而降低长细杆后续的侵彻能力,增强装甲的防护效果。利用LS—DYNA软件对多层横向、邻层反向运动的钢装甲板防护钨合金长细杆进行运动板速度和运动板的厚度分配的相关仿真计算。通过对计算结果中开坑形状、后效板侵深和装甲效能进行分析发现,随着板运动速度的增加,后效板开坑深度减小和开坑形状的非对称性加剧,运动板的干扰作用增强及防护效能提高;在运动板总厚度相同的情况下,板的层数越少,防护性能越好。  相似文献   

10.
Chain damage is a new phenomenon that occurs when a reactive jet impacts and penetrates multi-spaced plates.The reactive jet produces mechanical perforations on the spaced plates by its kinetic energy(KE),and then results in unusual chain rupturing effects and excessive structural damage on the spaced plates by its deflagration reaction.In the present study,the chain damage behavior is initially demonstrated by experiments.The reactive liners,composed of 26 wt%Al and 74 wt%PTFE,are fabricated through a pressing and sintering process.Three reactive liner thicknesses of 0.08 CD,0.10 CD and 0.12 CD(charge diameter)are chosen to carry out the chain damage experiments.The results show a chain rupturing phenomenon caused by reactive jet.The constant reaction delay time and the different penetration velocities of reactive jets from liners with different thicknesses result in the variation of the deflagration position,which consequently determines the number of ruptured plates behind the armor.Then,the finite-element code AUTODYN-3D has been used to simulate the kinetic energy only-induced rupturing effects on plates,based on the mechanism of behind armor debris(BAD).The significant discrepancies between simulations and experiments indicate that one enhanced damage mechanism,the behind armor blast(BAB),has acted on the ruptured plates.Finally,a theoretical model is used to consider the BAB-induced enhancement,and the analysis shows that the rupturing area on aluminum plates depends strongly upon the KE only-induced pre-perforations,the mass of reactive materials,and the thickness of plates.  相似文献   

11.
针对现行评价方法存在的问题,本文提出了一种基于BP神经网络的装甲战斗车辆性能指标需求方案评价方法。首先给出了装甲战斗车辆性能指标需求方案评价的指标体系,然后阐述了基于BP神经网络的装甲战斗车辆性能指标需求方案评价步骤,最后给出示例证明了方法的可行性。研究表明,该方法能够降低评价过程中人为因素的影响,从而提高了装甲战斗车辆性能指标需求方案评价的准确性。  相似文献   

12.
This paper studies the shaped charge jet performance in terms of different liner shapes including conical,bell,hemispherical and bi-conical liners.The critical angles and the relevant flow velocities for the zir-conium liner material were calculated analytically and numerically using Autodyn hydro-code.The relationship between the critical collapse angle and the flow velocity was determined for the conditions of jet formation and coherency.Penetration tests according to the standard testing procedures of API-RP34 (Section-Ⅱ) were performed to validate the numerical predictions of the jet performance of the studied liners.It was found that the four shaped charge liners all produced coherent jets with different performances.The penetration depth of the shaped charges with the bell and the bi-conical liner shapes increased by 10.3% and 22%,respectively,while the crater diameter of shaped charge with hemispherical liner increased by 85% representing the formation of an explosively-formed-projectile (EFP),when they are compared with the corresponding jet characteristics of a conical liner shaped charge.  相似文献   

13.
针对体系效能评估中仿真结果数据的转化和聚合问题,提出采用效用函数方法加以解决。首先构建了装甲装备体系作战效能的层次化指标体系,在此基础上,引入效用函数对仿真数据进行转化,然后通过加权求和得到体系的整体作战效能和作战能力。最后,通过装甲装备体系对抗仿真和效能评估实例,说明了该方法用于解决体系效能评估问题的可行性和有效性。  相似文献   

14.
《防务技术》2020,16(1):217-224
Experiments on shaped charge penetration into high and ultrahigh strength steel-fiber reactive powder concrete (RPC) targets were performed in this paper. Results show that the variation of penetration depth and crater diameter with concrete strength is different from that of shaped charge penetration into normal strength concrete (NSC). The crater diameter of RPC is smaller than that of NSC penetrated by the shaped charge. The jet particles are strongly disturbed and hardly reach the crater bottom because they pass through the narrow channel formed by jet penetration into the RPC. The effects of radial drift velocity and gap effects of jet particles for a shaped charge penetration into RPC target are discussed. Moreover, a theoretical model is presented to describe the penetration of shaped charge into RPC target. As the concrete strength increases, the penetration resistance increases and the entrance crater diameter decreases. Given the drift velocity and narrow crater channel, the low-velocity jet particles can hardly reach the crater bottom to increase the penetration depth. Moreover, the narrow channel has a stronger interference to the jet particles with increasing concrete strength; hence, the gap effects must be considered. The drift velocity and gap effects, which are the same as penetration resistance, also have significant effects during the process of shaped charge penetration into ultrahigh-strength concrete. The crater profiles are calculated through a theoretical model, and the results are in good agreement with the experiments.  相似文献   

15.
《防务技术》2019,15(5):802-807
Copper lined wave shaped shaped charges of particular design and liner metallurgy were used to investigate the effect of explosive crystal size on the resultant shaped charge jet parameters. Composition A3 with RDX of three different average crystal sizes, i.e. 30 μm, 100 μm and 300 μm were used in the investigation. All other parameters in the charge were kept constant and in particular, care was given to obtain consistent dimensional quality and liner microstructure, in order to prohibit the variation of other parameters. Specific flash-X-ray diagnostics were used in field tests to obtain the jet parameters from multiple firings of similar charges. It is found that the varying crystal size of the RDX has a marginal influence in the total jet length of the jets. However, it is also found that there is less variation between firings in the jet parameters for jets from the charges loaded with the crystal size of 100 μm.  相似文献   

16.
针对装甲目标威胁评估指标权重随着作战时节的动态变化,容易导致评估结果前后有差异的问题,运用灰色区间关联法,引入区间灰数与灰度,对评估指标区间内的不确定性信息进行了量化。同时,运用变权理论,通过调整权向量,构造反映作战时节内装甲目标威胁评估指标权重变化的均衡函数,对装甲目标威胁程度进行了科学、合理的评估,解决了传统评估方法中评估结果与实际威胁程度不一致的问题,为下一步的威胁评估研究工作提供了理论参考与方法支持。  相似文献   

17.
《防务技术》2020,16(2):408-416
Ceramic balls represent a new type of damaging element, and studies on their damaging power of composite armor are required for a comprehensive evaluation of the effectiveness of various types of weapons. The goal of this study was to determine the impact of ϕ7 mm toughened Al2O3 ceramic balls on a composite ceramic/metal armor. The influences of the ceramic panel and the thickness of the metal backing material on the destroying power of the ceramic balls were first determined. Based on the agreement between numerical simulation, experimental results, and calculation models of the target plate resistance, the response mechanism of the ceramic balls was further analyzed. The results indicate that for a back plate of Q235 steel, with an increasing thickness of the ceramic panel, the piercing speed limit of the ceramic balls gradually increases and the diameter of the out-going hole on the metal back decreases. Different conditions were tested to assess the effects on the piercing speed, the diameter of the out-going hole, the micro-element stress, and the integrity of the recovered ceramic bowl.  相似文献   

18.
《防务技术》2022,18(9):1578-1588
In this paper, the reaction characteristic and its application in shaped charge warhead of a novel reactive material, which introduced copper (Cu) and plumbum (Pb) into traditional polytetrafluoroethylene/aluminum (PTFE/Al), are studied. The thermal analysis and chemical reaction behavior of the PTFE/Al/Cu/Pb mixture are investigated by Differential Scanning Calorimetry (DSC),Thermo-gravimetry (TG), and X-ray Diffraction (XRD) techniques. Then, the shaped charge liners with PTFE/Al/Cu/Pb reactive materials are fabricated, and the X-ray experiments show that they could form reactive jets with excellent performance under the detonation effects of the shaped charge. Based on that, the penetration experiments of shaped charge with PTFE/Al/Cu/Pb reactive liner against steel plates are carried out, and the results demonstrate that the PTFE/Al/Cu/Pb reactive jets could produce a deeper penetration depth compared to the traditional PTFE/Al reactive jets. Meanwhile, the PTFE/Al/Cu/Pb reactive jets also show significant inner-blast effects, leading to dramatically cracking or fragmentation behavior of the penetrated steel plates. This new PTFE/Al/Cu/Pb reactive liner shaped charge presents enhanced penetration behavior for steel targets that incorporates the penetration capability of a high-density and ductility jet, and the chemical energy release of PTFE-matrix reactive materials.  相似文献   

19.
In order to improve the infrared detection and discrimination ability of the smart munition to the dy-namic armor target under the complex background, the multi-line array infrared detection system is established based on the combination of the single unit infrared detector. The surface dimension features of ground armored targets are identified by size calculating solution algorithm. The signal response value and the value of size calculating are identified by the method of fuzzy recognition to make the fuzzy classification judgment for armored target. According to the characteristics of the target signal, a custom threshold de-noising function is proposed to solve the problem of signal preprocessing. The multi-line array infrared detection can complete the scanning detection in a large area in a short time with the characteristics of smart munition in the steady-state scanning stage. The method solves the disadvan-tages of wide scanning interval and low detection probability of single unit infrared detection. By reducing the scanning interval, the number of random rendezvous in the infrared feature area of the upper surface is increased, the accuracy of the size calculating is guaranteed. The experiments results show that in the fuzzy recognition method, the size calculating is introduced as the feature operator, which can improve the recognition ability of the ground armor target with different shape size.  相似文献   

20.
应用AUTODYN仿真软件,对一种复合战斗部方案的爆炸成型弹丸成型性能进行了分析,结果表明,相对于传统布局方案,破片方案更改后改变了药型罩的成型过程,导致爆炸成型弹丸形状变差从而降低了毁伤性能。通过对结构参数影响进行分析,提出了优化方案,解决了破片方案调整后爆炸成型弹丸的成型问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号