首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A primal simplex procedure is developed to solve transportation problems with an arbitrary additional linear constraint. The approach is a specialization of the Double Reverse Method of Charnes and Cooper. Efficient procedures for pricing-out the basis, determining representations, and implementing the change of basis are presented. These procedures exploit the pure transportation substructure in such a manner that full advantage may be taken of the computational schemes and list structures used to store and update the basis in codifying the MODI method. Furthermore, the pricing-out and change-of-basis procedures are organized in a manner that permits the calculations for one to be utilized in the other. Computational results are presented which indicate that this method is at least 50 times faster than the state-of-the-art LP code, APEX-III. Methods for obtaining basic primal “feasible” starts and “good” feasible integer solutions are also presented.  相似文献   

2.
This article proposes two dual‐ascent algorithms and uses each in combination with a primal drop heuristic embedded within a branch and bound framework to solve the uncapacitated production assembly distribution system (i.e., supply chain) design problem, which is formulated as a mixed integer program. Computational results indicate that one approach, which combines primal drop and dual‐ascent heuristics, can solve instances within reasonable time and prescribes solutions with gaps between the primal and dual solution values that are less than 0.15%, an efficacy suiting it for actual large‐scale applications. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

3.
We consider in this paper the coordinated replenishment dynamic lot‐sizing problem when quantity discounts are offered. In addition to the coordination required due to the presence of major and minor setup costs, a separate element of coordination made possible by the offer of quantity discounts needs to be considered as well. The mathematical programming formulation for the incremental discount version of the extended problem and a tighter reformulation of the problem based on variable redefinition are provided. These then serve as the basis for the development of a primal‐dual based approach that yields a strong lower bound for our problem. This lower bound is then used in a branch and bound scheme to find an optimal solution to the problem. Computational results for this optimal solution procedure are reported in the paper. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 686–695, 2000  相似文献   

4.
To solve linear fixed charge problems with Murty's vertex ranking algorithm, one uses a simplex algorithm and a procedure to determine the vertices adjacent to a given vertex. In solving fixed charge transportation problems, the simplex algorithm simplifies to the stepping-stone algorithm. To find adjacent vertices on transportation polytopes, we present a procedure which is a simplification of a more general procedure for arbitrary polytopes.  相似文献   

5.
This article examines a problem faced by a firm procuring a material input or good from a set of suppliers. The cost to procure the material from any given supplier is concave in the amount ordered from the supplier, up to a supplier‐specific capacity limit. This NP‐hard problem is further complicated by the observation that capacities are often uncertain in practice, due for instance to production shortages at the suppliers, or competition from other firms. We accommodate this uncertainty in a worst‐case (robust) fashion by modeling an adversarial entity (which we call the “follower”) with a limited procurement budget. The follower reduces supplier capacity to maximize the minimum cost required for our firm to procure its required goods. To guard against uncertainty, the firm can “protect” any supplier at a cost (e.g., by signing a contract with the supplier that guarantees supply availability, or investing in machine upgrades that guarantee the supplier's ability to produce goods at a desired level), ensuring that the anticipated capacity of that supplier will indeed be available. The problem we consider is thus a three‐stage game in which the firm first chooses which suppliers' capacities to protect, the follower acts next to reduce capacity from unprotected suppliers, and the firm then satisfies its demand using the remaining capacity. We formulate a three‐stage mixed‐integer program that is well‐suited to decomposition techniques and develop an effective cutting‐plane algorithm for its solution. The corresponding algorithmic approach solves a sequence of scaled and relaxed problem instances, which enables solving problems having much larger data values when compared to standard techniques. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

6.
We study a knapsack problem with an additional minimum filling constraint, such that the total weight of selected items cannot be less than a given threshold. The problem has several applications in shipping, e‐commerce, and transportation service procurement. When the threshold equals the knapsack capacity, even finding a feasible solution to the problem is NP‐hard. Therefore, we consider the case when the ratio α of threshold to capacity is less than 1. For this case, we develop an approximation scheme that returns a feasible solution with a total profit not less than (1 ‐ ε) times the total profit of an optimal solution for any ε > 0, and with a running time polynomial in the number of items, 1/ε, and 1/(1‐α). © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

7.
In this paper, we consider a variant of the classical transportation problem as well as of the bottleneck transportation problem, which we call the minimax transportation problem. The problem considered is to determine a feasible flow xij from a set of origins I to a set of destinations J for which max(i,j)εIxJ{cijxij} is minimum. In this paper, we develop a parametric algorithm and a primal-dual algorithm to solve this problem. The parametric algorithm solves a transportation problem with parametric upper bounds and the primal-dual algorithm solves a sequence of related maximum flow problems. The primal-dual algorithm is shown to be polynomially bounded. Numerical investigations with both the algorithms are described in detail. The primal-dual algorithm is found to be computationally superior to the parametric algorithm and it can solve problems up to 1000 origins, 1000 destinations and 10,000 arcs in less than 1 minute on a DEC 10 computer system. The optimum solution of the minimax transportation problem may be noninteger. We also suggest a polynomial algorithm to convert this solution into an integer optimum solution.  相似文献   

8.
This paper does not present a new result, rather it is meant to illustrate the choice of modelling procedures available to an analyst in a typical inventory control problem. The same “average cost per unit time” expression is developed by three quite different procedures. This variety of approaches, as well as the recounting of the author's chronological efforts to solve the problem, should be of interest to the reader. The specific inventory problem studied is one where the controller of an item is faced with random opportunities for replenishment at a reduced setup cost; the problem is an integral component of the broader problem of inventory control of a group of items whose replenishments are coordinated to reduce the costs of production, procurement, and/or transportation.  相似文献   

9.
In this paper, we consider a new weapon–target allocation problem with the objective of minimizing the overall firing cost. The problem is formulated as a nonlinear integer programming model. We applied Lagrangian relaxation and a branch‐and‐bound method to the problem after transforming the nonlinear constraints into linear ones. An efficient primal heuristic is developed to find a feasible solution to the problem to facilitate the procedure. In the branch‐and‐bound method, three different branching rules are considered and the performances are evaluated. Computational results using randomly generated data are presented. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 640–653, 1999  相似文献   

10.
The integer programming literature contains many algorithms for solving all-integer programming problems but, in general, existing algorithms are less than satisfactory even in solving problems of modest size. In this paper we present a new technique for solving the all-integer, integer programming problem. This algorithm is a hybrid (i.e., primal-dual) cutting-plane method which alternates between a primal-feasible stage related to Young's simplified primal algorithm, and a dual-infeasible stage related to Gomory's dual all-integer algorithm. We present the results of computational testing.  相似文献   

11.
We consider a two‐level system in which a warehouse manages the inventories of multiple retailers. Each retailer employs an order‐up‐to level inventory policy over T periods and faces an external demand which is dynamic and known. A retailer's inventory should be raised to its maximum limit when replenished. The problem is to jointly decide on replenishment times and quantities of warehouse and retailers so as to minimize the total costs in the system. Unlike the case in the single level lot‐sizing problem, we cannot assume that the initial inventory will be zero without loss of generality. We propose a strong mixed integer program formulation for the problem with zero and nonzero initial inventories at the warehouse. The strong formulation for the zero initial inventory case has only T binary variables and represents the convex hull of the feasible region of the problem when there is only one retailer. Computational results with a state‐of‐the art solver reveal that our formulations are very effective in solving large‐size instances to optimality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

12.
We consider the problem of determining the capacity to assign to each arc in a given network, subject to uncertainty in the supply and/or demand of each node. This design problem underlies many real‐world applications, such as the design of power transmission and telecommunications networks. We first consider the case where a set of supply/demand scenarios are provided, and we must determine the minimum‐cost set of arc capacities such that a feasible flow exists for each scenario. We briefly review existing theoretical approaches to solving this problem and explore implementation strategies to reduce run times. With this as a foundation, our primary focus is on a chance‐constrained version of the problem in which α% of the scenarios must be feasible under the chosen capacity, where α is a user‐defined parameter and the specific scenarios to be satisfied are not predetermined. We describe an algorithm which utilizes a separation routine for identifying violated cut‐sets which can solve the problem to optimality, and we present computational results. We also present a novel greedy algorithm, our primary contribution, which can be used to solve for a high quality heuristic solution. We present computational analysis to evaluate the performance of our proposed approaches. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 236–246, 2016  相似文献   

13.
The bottleneck transportation problem can be stated as follows: A set of supplies and a set of demands are specified such that the total supply is equal to the total demand. There is a transportation time associated between each supply point and each demand point. It is required to find a feasible distribution (of the supplies) which minimizes the maximum transportaton time associated between a supply point and a demand point such that the distribution between the two points is positive. In addition, one may wish to find from among all optimal solutions to the bottleneck transportation problem, a solution which minimizes the total distribution that requires the maximum time Two algorithms are given for solving the above problems. One of them is a primal approach in the sense that improving fcasible solutions are obtained at each iteration. The other is a “threshold” algorithm which is found to be far superior computationally.  相似文献   

14.
We formulate the set partitioning problem as a matching problem with simple side constraints. As a result we obtain a Lagrangian relaxation of the set partitioning problem in which the primal problem is a matching problem. To solve the Lagrangian dual we must solve a sequence of matching problems each with different edge-weights. We use the cyclic coordinate method to iterate the multipliers, which implies that successive matching problems differ in only two edge-weights. This enables us to use sensitivity analysis to modify one optimal matching to obtain the next one. We give theoretical and empirical comparisons of these dual bounds with the conventional linear programming ones.  相似文献   

15.
16.
The fixed charge problem is a nonlinear programming problem of practical interest in business and industry. Yet, until now no computationally feasible exact method of solution for large problems had been developed. In this paper an exact algorithm is presented which is computationally feasible for large problems. The algorithm is based upon a branch and bound approach, with the additional feature that the amount of computer storage required remains constant throughout (for a problem of any given size). Also presented are three suboptimal heuristic algorithms which are of interest because, although they do not guarantee that the true optimal solution will be found, they usually yield very good solutions and are extremely rapid techniques. Computational results are described for several of the heuristic methods and for the branch and bound algorithm.  相似文献   

17.
针对目前军事仿真系统开发中存在的军事仿真规则提取不完备的问题,在充分发挥ECA规则提取方法优势的基础上,提出了面向实体的军事仿真规则提取方法。该方法以实体状态变迁为中心,运用系统论方法,重点分析实体的环境、功能、行为、组元和结构状态,并将分析结果引入ECA规则。通过将该方法应用于装备抢修组实施抢修的规则提取中,验证了其对于提高规则的完备性与可信性具有较好的效果。  相似文献   

18.
We address a single product, continuous review model with stationary Poisson demand. Such a model has been effectively studied when mean demand is known. However, we are concerned with managing new items for which only a Bayesian prior distribution on the mean is available. As demand occurs, the prior is updated and our control parameters are revised. These include the reorder point (R) and reorder quantity (Q). Deemer, taking a clue from some earlier RAND work, suggested using a model appropriate for known mean, but using a Compound Poisson distribution for demand rather than Poisson to reflect uncertainty about the mean. Brown and Rogers also used this approach but within a periodic review context. In this paper we show how to compute optimum reorder points for a special problem closely related to the problem of real interest. In terms of the real problem, subject to a qualification to be discussed, the reorder points found are upper bounds for the optimum. At the same time, the reorder points found can never exceed those found by the Compound Poisson (Deemer) approach. And they can be smaller than those found when there is no uncertainty about the mean. As a check, the Compound Poisson and proposed approach are compared by simulation.  相似文献   

19.
Optimizing the selection of resources to accomplish a set of tasks involves evaluating the tradeoffs between the cost of maintaining the resources necessary to accomplish the tasks and the penalty cost associated with unfinished tasks. We consider the case where resources are categorized into types, and limits (capacity) are imposed on the number of each type that can be selected. The objective is to minimize the sum of penalty costs and resource costs. This problem has several practical applications including production planning, new product design, menu selection and inventory management. We develop a branch‐and‐bound algorithm to find exact solutions to the problem. To generate bounds, we utilize a dual ascent procedure which exploits the special structure of the problem. Information from the dual and recovered primal solutions are used to select branching variables. We generate strong valid inequalities and use them to fix other variables at each branching step. Results of tests performed on reasonably sized problems are presented. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 19–37, 1999  相似文献   

20.
We focus on the concave‐cost version of a production planning problem where a manufacturer can meet demand by either producing new items or by remanufacturing used items. Unprocessed used items are disposed. We show the NP‐hardness of the problem even when all the costs are stationary. Utilizing the special structure of the extreme‐point optimal solutions for the minimum concave‐cost problem with a network flow type feasible region, we develop a polynomial‐time heuristic for the problem. Our computational study indicates that the heuristic is a very efficient way to solve the problem as far as solution speed and quality are concerned. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号