首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given n jobs and a single facility, and the fact that a subset of jobs are “related” to each other in such a manner that regardless of which job is completed first, its utility is hampered until all other jobs in the same subset are also completed, it is desired to determine the sequence which minimizes the cost of tardiness. The special case of pairwise relationship among all jobs is easily solved. An algorithm for the general case is given through a dynamic programming formulation.  相似文献   

2.
An inventory of physical goods or storage space (in a communications system buffer, for instance) often experiences “all or nothing” demand: if a demand of random size D can be immediately and entirely filled from stock it is satisfied, but otherwise it vanishes. Probabilistic properties of the resulting inventory level are discussed analytically, both for the single buffer and for multiple buffer problems. Numerical results are presented.  相似文献   

3.
This article considers combat between two homogeneous forces modeled by variable- coefficient Lanchester-type equations of modern warfare and develops new “simple-approximate” battle-outcome-prediction conditions for military engagements terminated by two different types of prescribed conditions being met (fixed-force-level-breakpoint battles and fixed-force-ratio-breakpoint battles). These battle-outcome-prediction conditions are sufficient (but not necessary) to determine the outcome of battle without having to explicitly compute the force-level trajectories, and they are characterized by their simplicity, requiring no advanced mathematical knowledge or tabulations of “special functions” for their application. Integrability properties of the Lanchester attrition-rate coefficients figure prominently in their results, and involved in their development is a generalization of Lanchester's famous square law to variable-coefficient Lanchester-type combat and several other novel mathematical developments for the analysis of ordinary differential equations. Examples are given, with the attack of a mobile force against a static defensive position (both sides armed with weapons whose firepower is range dependent) being examined in detail.  相似文献   

4.
The existing literature concentrates on determining sharp upper bounds for EVPI in stochastic programming problems. This seems to be a problem without an application. Lower bounds, which we view as having an important application, are only the incidental subject of study and in the few instances that are available are obtained at an extremely high cost. In order to suggest a rethinking of the course of this research, we analyze the need for bounds on EVPI in the context of its significance in decision problems.  相似文献   

5.
We revisit the capacity investment decision problem studied in the article “Resource Flexibility with Responsive Pricing” by Chod and Rudi [Operations Research 53, (2005) 532–548]. A monopolist firm producing two dependent (substitutable or complementary) products needs to determine the capacity of one flexible resource under demand risk so as to maximize its expected profit. Product demands are linear functions of the prices of both products, and the market potentials are random and correlated. We perform a comparative statics analysis on how demand variability and correlation impact the optimal capacity and the resulting expected profit. In particular, C&R study this problem under the following assumptions/approximations: (i) demand intercepts follow a bivariate Normal distribution; (ii) demand uncertainty is of an additive form; (iii) and under approximate expressions for the optimal capacity and optimal expected profit. We revisit Propositions 2, 3, 4, 5, and 10 of C&R without these assumptions and approximations, and show that these results continue to hold (i) for the exact expressions for the optimal expected profit and optimal capacity, and (ii) under any arbitrary continuous distribution of demand intercepts. However, we also show that the additive demand uncertainty is a critical assumption for the C&R results to hold. In particular, we provide a case of multiplicative uncertainty under which the C&R results (Propositions 2 and 3) fail. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

6.
In this paper we propose some non‐greedy heuristics and develop an Augmented‐Neural‐Network (AugNN) formulation for solving the classical open‐shop scheduling problem (OSSP). AugNN is a neural network based meta‐heuristic approach that allows integration of domain‐specific knowledge. The OSSP is framed as a neural network with multiple layers of jobs and machines. Input, output and activation functions are designed to enforce the problem constraints and embed known heuristics to generate a good feasible solution fast. Suitable learning strategies are applied to obtain better neighborhood solutions iteratively. The new heuristics and the AugNN formulation are tested on several benchmark problem instances in the literature and on some new problem instances generated in this study. The results are very competitive with other meta‐heuristic approaches, both in terms of solution quality and computational times. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

7.
We present a branch‐and‐price technique for optimal staff scheduling with multiple rest breaks, meal break, and break windows. We devise and implement specialized branching rules suitable for solving the set covering type formulation implicitly, using column generation. Our methodology is more widely applicable and computationally superior to the alternative methods in the literature. We tested our methodology on 365 test problems involving between 1728 and 86400 shift variations, and 20 demand patterns. In a direct comparison with an alternative method, our approach yields significant improvements both in cpu time and in the number of problem instances solved to optimality. The improvements were particularly marked for problems involving larger numbers of feasible shifts. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 185–200, 2000  相似文献   

8.
In a recent paper, Teng, Chern, and Yang consider four possible inventory replenishment models and determine the optimal replenishment policies for them. They compare these models to identify the best alternative on the basis of minimum total relevant inventory costs. The total cost functions for Model 1 and Model 4 as derived by them are not exact for the comparison. As a result, their conclusion on the least expensive replenishment policy is incorrect. The present article provides the actual total costs for Model 1 and Model 4 to make a correct comparison of the four models. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 602–606, 2000  相似文献   

9.
We introduce a multi‐period tree network maintenance scheduling model and investigate the effect of maintenance capacity restrictions on traffic/information flow interruptions. Network maintenance refers to activities that are performed to keep a network operational. For linear networks with uniform flow between every pair of nodes, we devise a polynomial‐time combinatorial algorithm that minimizes flow disruption. The spiral structure of the optimal maintenance schedule sheds insights into general network maintenance scheduling. The maintenance problem on linear networks with a general flow structure is strongly NP‐hard. We formulate this problem as a linear integer program, derive strong valid inequalities, and conduct a polyhedral study of the formulation. Polyhedral analysis shows that the relaxation of our linear network formulation is tight when capacities and flows are uniform. The linear network formulation is then extended to an integer program for solving the tree network maintenance scheduling problem. Preliminary computations indicate that the strengthened formulations can solve reasonably sized problems on tree networks and that the intuitions gained from the uniform flow case continue to hold in general settings. Finally, we extend the approach to directed networks and to maintenance of network nodes. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

10.
This article describes a polynomial transformation for a class of unit‐demand vehicle routing problems, named node‐balanced routing problems (BRP), where the number of nodes on each route is restricted to be in an interval such that the workload across the routes is balanced. The transformation is general in that it can be applied to single or multiple depot, homogeneous or heterogeneous fleet BRPs, and any combination thereof. At the heart of the procedure lies transforming the BRP into a generalized traveling salesman problem (TSP), which can then be transformed into a TSP. The transformed graph exhibits special properties which can be exploited to significantly reduce the number of arcs, and used to construct a formulation for the resulting TSP that amounts to no more than that of a constrained assignment problem. Computational results on a number of instances are presented. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 370–387, 2015  相似文献   

11.
Computer simulation has many advantages. However, one major disadvantage is that, in all too many cases, the attempt to use computer simulation to find an optimum solution to a problem rapidly degenerates into a trial-and-error process. Techniques for overcoming this disadvantage, i. e., for making optimization and computer simulation more compatible, are applicable at two points in the development of the overall computer simulation. Techniques which are used within actual construction of the mathematical models comprising the simulation will be labeled as internal methods, while those which are used after the simulation has been completely developed will be termed external methods Because external methods appear to offer the largest potential payoff, discussion is restricted to these methods, which are essentially search techniques. In addition, the development of an “Optimizer” computer program based on these techniques is suggested Although drawbacks to the use of search techniques in the computer simulation framework exist, these techniques do offer potential for “optimization.” The modification of these techniques to satisfy the requirements of an “Optimizer” is discussed.  相似文献   

12.
This paper considers the two different flow shop scheduling problems that arise when, in a two machine problem, one machine is characterized by sequence dependent setup times. The objective is to determine a schedule that minimizes makespan. After establishing the optimally of permutation schedules for both of these problems, an efficient dynamic programming formulation is developed for each of them. Each of these formulations is shown to be comparable, from a computational standpoint, to the corresponding formulation of the traveling salesman problem. Then, the relative merits of the dynamic programming and branch and bound approaches to these two scheduling problems are discussed.  相似文献   

13.
Logistical planning problems are complicated in practice because planners have to deal with the challenges of demand planning and supply replenishment, while taking into account the issues of (i) inventory perishability and storage charges, (ii) management of backlog and/or lost sales, and (iii) cost saving opportunities due to economies of scale in order replenishment and transportation. It is therefore not surprising that many logistical planning problems are computationally difficult, and finding a good solution to these problems necessitates the development of many ad hoc algorithmic procedures to address various features of the planning problems. In this article, we identify simple conditions and structural properties associated with these logistical planning problems in which the warehouse is managed as a cross‐docking facility. Despite the nonlinear cost structures in the problems, we show that a solution that is within ε‐optimality can be obtained by solving a related piece‐wise linear concave cost multi‐commodity network flow problem. An immediate consequence of this result is that certain classes of logistical planning problems can be approximated by a factor of (1 + ε) in polynomial time. This significantly improves upon the results found in literature for these classes of problems. We also show that the piece‐wise linear concave cost network flow problem can be approximated to within a logarithmic factor via a large scale linear programming relaxation. We use polymatroidal constraints to capture the piece‐wise concavity feature of the cost functions. This gives rise to a unified and generic LP‐based approach for a large class of complicated logistical planning problems. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

14.
This paper deals with a two searchers game and it investigates the problem of how the possibility of finding a hidden object simultaneously by players influences their behavior. Namely, we consider the following two‐sided allocation non‐zero‐sum game on an integer interval [1,n]. Two teams (Player 1 and 2) want to find an immobile object (say, a treasure) hidden at one of n points. Each point i ∈ [1,n] is characterized by a detection parameter λi (μi) for Player 1 (Player 2) such that pi(1 ? exp(?λixi)) (pi(1 ? exp(?μiyi))) is the probability that Player 1 (Player 2) discovers the hidden object with amount of search effort xi (yi) applied at point i where pi ∈ (0,1) is the probability that the object is hidden at point i. Player 1 (Player 2) undertakes the search by allocating the total amount of effort X(Y). The payoff for Player 1 (Player 2) is 1 if he detects the object but his opponent does not. If both players detect the object they can share it proportionally and even can pay some share to an umpire who takes care that the players do not cheat each other, namely Player 1 gets q1 and Player 2 gets q2 where q1 + q2 ≤ 1. The Nash equilibrium of this game is found and numerical examples are given. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

15.
We study linear programming models that contain transportation constraints in their formulation. Typically, these models have a multistage nature and the transportation constraints together with the associated flow variables are used to achieve consistency between consecutive stages. We describe how to reformulate these models by projecting out the flow variables. The reformulation can be more desirable since it has fewer variables and can be solved faster. We apply these ideas to reformulate two well‐known workforce staffing and scheduling problems: the shift scheduling problem and the tour scheduling problem. We also present computational results. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

16.
In this article we try to identify appropriate solution procedures for different types of multiechelon production planning problems. We conduct an extensive computational study on uncapacitated multiechelon production planning problems with serial and assembly types of bill-of-material structures. Problems are formulated as both single-source fixed charge network problems and as multicommodity flow problems with fixed charges. Solution procedures considered are branch and cut, Lagrangean relaxation (for the network formulation), and branch and bound (for the multicommodity formulation). Three hundred problems with various problem structures are tested. Our conclusions suggest the best approach for each type of problem structure. © 1997 John Wiley & Sons, Inc.  相似文献   

17.
We consider the ??p‐norm multi‐facility minisum location problem with linear and distance constraints, and develop the Lagrangian dual formulation for this problem. The model that we consider represents the most general location model in which the dual formulation is not found in the literature. We find that, because of its linear objective function and less number of variables, the Lagrangian dual is more useful. Additionally, the dual formulation eliminates the differentiability problem in the primal formulation. We also provide the Lagrangian dual formulation of the multi‐facility minisum location problem with the ??pb‐norm. Finally, we provide a numerical example for solving the Lagrangian dual formulation and obtaining the optimum facility locations from the solution of the dual formulation. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 410–421, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10010  相似文献   

18.
This article is a sequel to a recent article that appeared in this journal, “An extensible modeling framework for dynamic reassignment and rerouting in cooperative airborne operations” [ 17 ], in which an integer programming formulation to the problem of rescheduling in‐flight assets due to changes in battlespace conditions was presented. The purpose of this article is to present an improved branch‐and‐bound procedure to solve the dynamic resource management problem in a timely fashion, as in‐flight assets must be quickly re‐tasked to respond to the changing environment. To facilitate the rapid generation of attractive updated mission plans, this procedure uses a technique for reducing the solution space, supports branching on multiple decision variables simultaneously, incorporates additional valid cuts to strengthen the minimal network constraints of the original mathematical model, and includes improved objective function bounds. An extensive numerical analysis indicates that the proposed approach significantly outperforms traditional branch‐and‐bound methodologies and is capable of providing improved feasible solutions in a limited time. Although inspired by the dynamic resource management problem in particular, this approach promises to be an effective tool for solving other general types of vehicle routing problems. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

19.
Clustering problems are often difficult to solve due to nonlinear cost functions and complicating constraints. Set partitioning formulations can help overcome these challenges, but at the cost of a very large number of variables. Therefore, techniques such as delayed column generation must be used to solve these large integer programs. The underlying pricing problem can suffer from the same challenges (non‐linear cost, complicating constraints) as the original problem, however, making a mathematical programming approach intractable. Motivated by a real‐world problem in printed circuit board (PCB) manufacturing, we develop a search‐based algorithm (Rank‐Cluster‐and‐Prune) as an alternative, present computational results for the PCB problem to demonstrate the tractability of our approach, and identify a broader class of clustering problems for which this approach can be used. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

20.
A new method for the solution of minimax and minisum location–allocation problems with Euclidean distances is suggested. The method is based on providing differentiable approximations to the objective functions. Thus, if we would like to locate m service facilities with respect to n given demand points, we have to minimize a nonlinear unconstrained function in the 2m variables x1,y1, ?,xm,ym. This has been done very efficiently using a quasi-Newton method. Since both the original problems and their approximations are neither convex nor concave, the solutions attained may be only local minima. Quite surprisingly, for small problems of locating two or three service points, the global minimum was reached even when the initial position was far from the final result. In both the minisum and minimax cases, large problems of locating 10 service facilities among 100 demand points have been solved. The minima reached in these problems are only local, which is seen by having different solutions for different initial guesses. For practical purposes, one can take different initial positions and choose the final result with best values of the objective function. The likelihood of the best results obtained for these large problems to be close to the global minimum is discussed. We also discuss the possibility of extending the method to cases in which the costs are not necessarily proportional to the Euclidean distances but may be more general functions of the demand and service points coordinates. The method also can be extended easily to similar three-dimensional problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号