首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
《防务技术》2020,16(1):178-187
An experimental platform of a pulse detonation engine (PDE) was established to study the effect of different K2CO3 ionized seed mass contents on the detonation process. The pressure and ion concentration were detected in the detonation process of the PDE with different contents of ionized seeds. The initiation process of the PDE at different ignition frequencies was studied. The results show that the gas conductivity in the detonation process increased by adding ionized seeds to the PDE tube, and the conductivity increased with the increase in ionized seed mass content. With the increase in ionized seed mass content, the range of the conductivity decreased. The PDE was successfully ignited and formed a stable detonation wave at ignition frequencies of 5 Hz and 10 Hz, and the peak pressure of the stable detonation with the ignition frequency of 5 Hz was 17% higher than that with an ignition frequency of 10 Hz. The detonation wave intensity was weakened and degenerated to a shock wave that propagated in the tube without the fuel filled at the ignition frequency of 20 Hz.  相似文献   

2.
A melt-cast Duan-Zhang-Kim (DZK) mesoscopic reaction rate model is developed for the shock initiation of melt-cast explosives based on the pore collapse hot-spot ignition mechanism. A series of shock initiation experiments was performed for the Comp B melt-cast explosive to estimate effects of the loading pressure and the particle size of granular explosive component, and the mesoscopic model is validated against the experimental data. Further numerical simulations indicate that the initial density and formula proportion greatly affect the hot-spot ignition of melt-cast explosives.  相似文献   

3.
《防务技术》2022,18(9):1602-1621
Investigating the damage and ignition behaviors of polymer-bonded explosive (PBX) under a coupled impact and high-temperature loading condition is required for the safe use of charged PBXs. An improved combined microcrack and microvoid model (CMM) was developed for better describing the thermal effects of deformation, damage, and ignition responses of PBXs. The main features of the model under typical dynamic loadings (i.e. uniaxial tension and compression, and lateral confinement) at different initial temperature were first studied. And then the effects of temperature on impact-shear sensitivity of HMX-based PBXs were investigated. The results showed that the ignition threshold velocity of shear-crack hotspots exhibits an increase from 260 to 270 to 315–325 m/s when initial temperature increases from 301 to 348 K; and then the threshold velocity decreases to 290–300 m/s with the initial temperature continually increasing to 378 K. The predicted ignition threshold velocity level of the explosives under coupled impact and high temperature loading conditions were consistent with the experimental data.  相似文献   

4.
《防务技术》2022,18(10):1886-1894
Improving the thermal decomposition performance of hexanitrohexaazaisowurtzitane (CL-20) by appropriate methods is helpful to promote the combustion performance of CL-20-based solid propellants. In this study, we synthesized a sandwich structure of CL-20 and nanoporous carbon scaffolds film (NCS) and emphatically studied the thermal decomposition performance of the composite structure. Thermogravimetric analysis and differential scanning calorimetry were used to measure the thermal decomposition process of the composite structure. The kinetic parameters of thermal decomposition were calculated by the thermal dynamic analysis software AKTS. These results showed that the thermal decomposition performance of the sandwich structure of CL-20 and NCS was better than CL-20. Among the tested samples, NCS with a pore size of 15 nm had the best catalytic activity for the thermal decomposition of CL-20. Moreover, the thermal decomposition curve of the composite structure at the heating rate of 1 K/min was deconvoluted by mathematical method to study the thermal decomposition process. And a possible catalytic mechanism was proposed. The excellent thermal decomposition performance is due to the sandwich structure enhances the interface reaction of CL-20 and NCS. This work may promote the extensive use of CL-20 in the field of solid rocket propellant.  相似文献   

5.
《防务技术》2020,16(3):635-641
Among practical metal additives, boron (B) has a high volumetric heating value, making it a promising choice as a fuel additive. Although B can theoretically yield a large amount of energy upon complete combustion, its combustion is retarded by the initial presence of B oxide, which coats the surfaces of B particle. To improve the ignition and combustion properties of B powder, LiOH and NH4F were used as precursors to synthesize uniformly LiF-coated B composites (LiF-B) in situ. The LiF-B mixture was also prepared for comparison using a physical method. X-ray diffraction (XRD), Fourier-transform infrared (FTIR), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to characterize the morphologies and compositions of the products. The thermal and combustion properties of the samples were characterized by thermal gravity-differential thermal gravity (TG-DTG), differential scanning calorimetry (DSC) and closed bomb experiment. The XRD, FTIR, SEM and EDS results demonstrated the successful preparation of the coated LiF-B sample. The TG-DTG and closed bomb experiment results indicated that the addition of LiF decreased the ignition temperature of B powder, and increasing its reaction efficiency. DSC results show that when LiF-B was added, the released heat of underwater explosive increased by 6727.2, 7280.4 and 3109.6 J/g at heating rates of 5, 10, and 15 °C/min, respectively. Moreover, LiF-B decreased the activation energy of secondary combustion reaction of explosive system as calculated through Kissinger's method by 28.9%, which indicated an excellent catalytic effect for the thermal decomposition of underwater explosive. The results reveal that LiF can improve the combustion efficiency of B powder, thereby increasing the total energy of explosives. The mechanical sensitivity increased slightly after adding LiF-B to the underwater explosive. Compared to the underwater explosive with added B, the mechanical sensitivity of the explosive with added LiF-B was significantly lower.  相似文献   

6.
《防务技术》2019,15(6):868-874
Ammonium perchlorate (APC) is the most common oxidizer in use for solid rocket propulsion systems. However its initial thermal decomposition is an endothermic process that requires 102.5 J·g−1. This manner involves high activation energy and could render high burning rate regime. This study reports on the sustainable fabrication of CuO nanoparticles as a novel catalyzing agent for APC oxidizer. Colloidal CuO nanoparticles with consistent product quality were fabricated by using hydrothermal processing. TEM micrographs demonstrated mono-dispersed particles of 15 nm particle size. XRD diffractogram demonstrated highly crystalline material. The synthesized colloidal CuO particles were effectively coated with APC particles via co-precipitation by using fast-crash solvent–antisolvent technique. The impact of copper oxide particles on APC thermal behavior has been investigated using DSC and TGA techniques. APC demonstrated an initial endothermic decomposition stage at 242 °C with subsequent two exothermic decomposition stages at 297.8 °C and 452.8 °C respectively. At 1 wt%, copper oxide offered decrease in initial endothermic decomposition stage by 30%. The main outcome of this study is that the two main exothermic decomposition peaks were merged into one single peak with an increase in total heat release by 53%. These novel features can inherit copper oxide particles unique catalyzing ability for advanced highly energetic systems.  相似文献   

7.
This paper reviews the achievements in the field of synthesis of new thermally resistant explosive compounds in the years 2009 through 2019. The performance characteristics of these compounds (sensitivity, thermal decomposition parameters, and detonation parameters) were compared with those of 1,3,5-triamino-2,4,6-trinitrobenzene, which still seems to be an unrivalled model of a thermally resistant and generally low-sensitivity explosive material. New thermally stable explosives (TSEs) were found among macromolecular compounds with tri- and dinitrophenyl groups, nitro and amine-nitro derivatives of azoles, and polynitro derivatives of calixarenes. Some of them match TATB in terms of thermal resistance and additionally have higher detonation parameters.  相似文献   

8.
《防务技术》2022,18(9):1538-1545
3-nitro-1,2,4-tri-azol-5-one (NTO) is a high energy insensitive explosive. To study the shock initiation process of NTO-based polymer bonded explosive JEOL-1 (32%octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 32% NTO, 28% Al and 8% binder system), the cylinder test, the gap experiments and numerical simulation were carried out. Firstly, we got the detonation velocity (7746 m/s) and the parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for detonation product by cylinder test and numerical simulation. Secondly, the Hugoniot curve of unreacted explosive for JEOL-1 was obtained calculating the data of pressure and time at different Lagrangian positions. Then the JWL EOS of unreacted explosive was obtained by utilizing the Hugoniot curve as the reference curve. Finally, we got the pressure growth history of JEOL-1 under shock wave stimulation and the parameters of the ignition and growth reaction rate equation were obtained by the pressure-time curves measured by the shock-initiation gap experiment and numerical simulation. The determined trinomial ignition and growth model (IG model) parameters can be applied to subsequently simulation analysis and design of insensitive ammunition with NTO-based polymer bonded explosive.  相似文献   

9.
A system receives shocks at random points of time. Each shock causes a random amount of damage which accumulates over time. The system fails when the accumulated damage exceeds a fixed threshold. Upon failure the system is replaced by a new one. The damage process is controlled by means of a maintenance policy. There are M possible maintenance actions. Given that a maintenance action m is employed, then the cumulative damage decreases at rate rm. Replacement costs and maintenance costs are considered. The objective is to determine an optimal maintenance policy under the following optimality criteria: (1) long-run average cost; (2) total expected discounted cost over an infinite horizon. For a diffusion approximation, we show that the optimal maintenance expenditure rate is monotonically increasing in the cumulative damage level.  相似文献   

10.
纤维增强SiO2气凝胶隔热复合材料的制备及其性能   总被引:7,自引:0,他引:7       下载免费PDF全文
将无机陶瓷纤维与SiO2溶胶混合,经超临界干燥制备了SiO2气凝胶隔热复合材料。SiO2气凝胶纤细的骨架颗粒减少了固态热传导,纳米级孔减少了气体热传导和对流传热,同时无机陶瓷纤维减少了辐射传热。SiO2气凝胶复合材料具有良好的隔热性能,其200℃和800℃的热导率分别为0.017W/m.K和0.042W/m.K。纤维的加入提供了力学支撑,高温处理增强了气凝胶骨架强度,材料在常温和高温下均具有良好的力学性能,其常温的拉伸、弯曲和抗压强度分别为1.44MPa、1.31MPa和0.98MPa(10%应变),800℃的拉伸、弯曲和抗压强度分别为1.95MPa、1.80MPa和1.42MPa(10%应变)。  相似文献   

11.
添加SiC微粉对硅树脂先驱体转化3D Cf/Si-O-C材料性能的影响   总被引:1,自引:0,他引:1  
以三维碳纤维织物和廉价的硅树脂为原料,采用先驱体转化工艺制备3D G/Si-O-C材料,考察了浸渍液中添加SiC填料对材料微观结构、力学性能和抗氧化性能影响.结果表明:添加适量的SiC填料有助于减少基体孔隙,改善界面结合,从而提高材料的力学性能;而SiC含量过高时,容易在材料内部形成闭孔,从而导致材料力学性能下降.当SiC微粉含量为18.2%时,材料具有最好的力学性能,弯曲强度和断裂韧度分别为421.3MPa和13.0 MPa·m1/2;而材料的抗氧化性能随着SiC微粉含量的增加而增加,当SiC微粉含量为25.0%时,材料的弯曲强度保留率最高,达到了89.5%.  相似文献   

12.
Ni-Zn铁氧体粉末的溶胶-凝胶合成及微波性能   总被引:2,自引:0,他引:2       下载免费PDF全文
以硝酸铁、硝酸镍、硝酸锌、柠檬酸和氨水为原料,用溶胶-凝胶法合成了不同组成的Ni-Zn铁氧体粉末。利用热分析、X射线衍射等手段研究了干凝胶热分解行为。利用网络分析仪对铁氧体粉末的电磁性能进行了表征,考察了铁氧体的组成与其电磁性能之间的关系。结果表明,溶胶-凝胶法合成的铁氧体粉末的μ″值随测试频率的提高和Ni-Zn铁氧体中锌含量的增加而减小。  相似文献   

13.
通过对影响油气受热着火的关键因素进行研究,为发展主动防护技术提供理论依据。基于系统的实验和分析,探究了快速氧化现象、热源加热速度、热源面积与爆燃空间比例对热着火发生时临界浓度、着火概率和着火延迟期的影响,提出了温升热源条件受限空间能否发生热着火的综合判据。该判据认为:如果油气体积分数低于2.4%,受限空间体积与热源面积比值小于0.64m,那么即使温度达到873K,湿度降低到18%~21%,着火也不会发生。  相似文献   

14.
《防务技术》2014,10(4):343-348
2,6-diamino-3,5-dinitropyrazine-1-oxide (ANPZO), as an insensitive high explosive, with a high yield and excellent purity has been prepared at pilot plant scale by an improved method. The synthesized ANPZO is characterized by IR, laser granularity measurement, SEM and HPLC. The particle analysis revealed that the improved method could offer desired product with average particle size of 40 μm and high purity (>98.45%). The experimental parameters exhibited that the detonation velocity of the formulation based on ANPZO was higher than that of the corresponding TATB formulation. The DSC curve showed that the exothermic decomposition of the product occurred at the temperature between 300.5 °C and 360.4 °C. Furthermore, the sensitivity test suggests its safe nature towards mechanical stimulus.  相似文献   

15.
《防务技术》2020,16(1):251-256
The hexanitrostilben (HNS) is a thermally stable explosive that can be prepared from hexanitrobibenzyl (HNBB). Therefore, the investigation of thermal stability of HNBB can be important in the yield of preparation of HNS. The decomposition kinetic of HNBB and HNS are studied by non-isothermal gravimetric method. The TG/DTG curves in non-isothermal method are obtained in range of 25°C–400 °C at heating rates of 3 °C/min, 5 °C/min, 8 °C/min, 10 °C/min and 12 °C/min. The data of weight-temperature are used for calculation of activation energy (Ea) of thermal decomposition reactions by methods of Ozawa, Kissinger, Ozawa-Flynn-Wall (OFW) and Kissinger-Akahira-Sunose (KAS) as model-free methods and Strink's equation as model-fitting method. The compensation effect is used for prediction of mechanism and determination of pre-exponential factor (lnA) of the decomposition reaction. A reduction 60 kj/mol for the average of activation energy of thermal decomposition reaction of HNBB is obtained versus HNS. This result shows the lower thermal stability of HNBB in comparison to HNS. The Avrami equation (A3/2) with function f(α) = 3/2(1-α)[-ln(1-α)]1/3 indicates the predicted mechanism for thermal decomposition reaction both explosives.  相似文献   

16.
《防务技术》2014,10(2):92-100
Cellulose acetate nitrate (CAN) was used as an insensitive energetic binder to improve the insensitive munitions (IM) properties of gun propellants to replace the M1 propellant used in 105 mm artillery charges. CAN contains the energetic nitro groups found in nitrocellulose (NC), but also acetyl functionalities, which lowered the polymer's sensitivity to heat and shock, and therefore improved its IM properties relative to NC. The formulation, development and small-scale characterization testing of several CAN-based propellants were done. The formulations, using insensitive energetic solid fillers and high-nitrogen modifiers in place of nitramine were completed. The small scale characterization testing, such as closed bomb testing, small scale sensitivity, thermal stability, and chemical compatibility were done. The mechanical response of the propellants under high-rate uni-axial compression at, hot, cold, and ambient temperatures were also completed. Critical diameter testing, hot fragment conductive ignition (HFCI) tests were done to evaluate the propellants' responses to thermal and shock stimuli. Utilizing the propellant chemical composition, theoretical predictions of erosivity were completed. All the small scale test results were utilized to down-select the promising CAN based formulations for large scale demonstration testing such as the ballistic performance and fragment impact testing in the 105 mm M67 artillery charge configurations. The test results completed in the small and large scale testing are discussed.  相似文献   

17.
本工作研究了在LY12表面用等离子喷涂氧化锆隔热涂层的热传导性能和抗热震性能及气孔率对这些性能的影响。结果表明,在所选择的最佳工艺参数和厚度下,涂层具有良好的绝热性和抗热震性。  相似文献   

18.
《防务技术》2014,10(1):28-33
A differential/integral method to estimate the kinetic parameters (apparent activation energy Ea and pre-exponential factor A) for thermal decomposition reaction of energetic materials based on Kooij formula are applied to study the nonisothermal decomposition reaction kinetics of hexanitrohexaazaisowurtzitane (HNIW) by analyzing nonisothermal DSC curve data. The apparent activation energy (Ea) obtained by the integral isoconversional non-isothermal method based on Kooij formula is used to check the constancy and validity of apparent activation energy by the differential/integral method based on Kooij formula. The most probable mechanism function of thermal decomposition reaction of HNIW is determined by a logical choice method. The equations for calculating the critical temperatures of thermal explosion (Tb) and adiabatic time-to-explosion (tTIad) based on Kooij formula are used to calculate the values of Tb and tTIad to evaluate the thermal safety and heat-resistant ability of HNIW. All the original data needed for analyzing the kinetic parameters are from nonisothermal DSC curves. The results show that the kinetic model function in differential form and the values of Ea and A of decomposition reaction of HNIW are 3(1 − α)[−ln(1 − α)]2/3, 152.73 kJ mol−1 and 1011.97 s−1, respectively, and the values of self-accelerating decomposition temperature (TSADT), Tb and tTIad are 486.55 K, 493.11 K and 52.01 s, respectively.  相似文献   

19.
二氧化硅气凝胶隔热复合材料的性能及其瞬态传热模拟   总被引:4,自引:0,他引:4  
高马赫数、新型航天飞行器承载严重的气动加热环境,其隔热材料的性能与传热计算对飞行器热防护结构的优化和预测具有一定的指导意义.研究了二氧化硅气凝胶隔热复合材料的结构与性能,并进行了瞬态传热模拟.结果表明复合材料热导率仅为0.018W/m·K,瞬态传热模拟结果与考核测试值吻合,为预测和优化隔热材料提供了一定的依据.  相似文献   

20.
热壁条件下油气热着火关键因素探究   总被引:1,自引:1,他引:0  
设计了受限空间内高温热壁条件下的油气热着火的实验系统.基于系统的实验和分析,探究了受限空间环境温度、湿度、压力、热壁温度对油气热着火发生的影响.实验发现:油气热着火概率随着热壁温度和环境温度的升高、湿度的减小而增加;油气混合物在汽油自燃点附近开始快速化学反应,油气热着火的最低临界温度为783 K;油气热着火存在三角形的着火压力半岛,且着火压力下限随热壁温度升高而降低,着火压力上限随温度升高而提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号