首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
溶胶—凝胶法合成氧化铝—氧化硅纳米粉   总被引:17,自引:0,他引:17       下载免费PDF全文
以AlCl3*6H2O和(CH2)6N4为原料,用溶胶-凝胶法合成出比表面积为189.6m2/g的γ相氧化铝粉,平均粒径约为9nm.以铝溶胶和硅溶胶为原料,用溶胶-凝胶法合成出反应活性高的Al2O3-SiO2复合粉体.该粉体在1300℃煅烧后转变为莫来石.  相似文献   

2.
以异丙醇、乙二醇、乙二醇甲醚和乙二醇乙醚4种有机物作为溶剂,采用溶胶-凝胶工艺在Si衬底上制备了钛酸锶钡(BST)薄膜。利用分光光度计、XRD、SEM等手段对不同溶剂溶胶的透光率和BST薄膜的结构、形貌进行了表征,从溶胶-凝胶转变速度和制备的薄膜结晶质量等方面研究了溶剂对溶胶-凝胶法制备薄膜的影响。研究结果表明:用乙二醇乙醚为溶剂,经过1~3d陈化后,BST薄膜质量较好;在溶胶-凝胶法制备薄膜中,选用黏度小、沸点高、蒸发热大的溶剂有利于形成致密度较高的薄膜。  相似文献   

3.
本文以钛酸丁酯为原料,通过溶胶一凝胶法制备了TiO2凝胶,在高温下烧结此凝胶得到TiO2。将TiO2粉末在900°C以上用氨进行氮化,制得金黄色的氮化钛。通过使用热分析、色谱分析、扫描电镜及X一射线衍射等手段,研究并揭示了凝胶在陶瓷化生成TiO2的过程中的化学反应,结晶及晶型随温度的变化规律。发现了氮化钛陶瓷的生成率与TiO2溶胶的制备条件之间的关系。  相似文献   

4.
溶胶—凝胶法制备SiO2气凝胶薄膜溶胶粘度的研究   总被引:1,自引:1,他引:1       下载免费PDF全文
用低介电常数介质薄膜代替传统的SiO2薄膜是减小ULSI中互连延迟、串扰和能耗的有效方法.SiO2气凝胶薄膜因具有低介电常数、低密度、高热稳定性等性能而成为ULSI中金属间介质的理想材料.以正硅酸乙酯为原料,采用酸/碱两步溶胶-凝胶法结合匀胶和超临界干燥等工艺在硅片上成功制备了SiO2气凝胶薄膜.研究了不同配比的SiO2溶胶粘度随时间的变化;确定了适于匀胶的溶胶的粘度范围为9~15mPa*s;发现溶胶粘度在9~15mPa*s的时间随溶剂异丙醇(IPA)用量的增加和NH4OH的减少而延长.  相似文献   

5.
氧化铝气凝胶复合材料的制备与隔热性能   总被引:7,自引:0,他引:7       下载免费PDF全文
以仲丁醇铝为先驱体,采用溶胶一凝胶工艺制备氧化铝溶胶,并将其与无机陶瓷纤维毡复合经超临界流体干燥得到氧化铝气凝胶隔热复合材料.利用扫描电子显微镜(SEM)和氮气吸附等方法对样品微观结构进行分析,利用热平板法对材料的隔热性能进行测试,并分析了氧化铝气凝胶隔热复合材料隔热机理.研究表明:与氧化硅气凝胶相比,氧化铝气凝胶具有更好的耐高温性能,经1000℃热处理后仍然能够较好地保持其纳米多孔结构;将气凝胶与纤维复合后,充分发挥了氧化铝气凝胶优良的隔热特性,使得复合材料的隔热性能较纯纤维毡有了明显的改善,其热面温度1000℃时导热系数为0.0685 W/m·K.  相似文献   

6.
用酸催化溶胶-凝胶法制得SiO2溶胶,分别采用共混法和原位聚合法制备含氟聚丙烯酸酯/SiO2纳米杂化涂层.利用红外光谱、扫描电镜等表征了杂化涂层的结构、形态及SiO2相的分散性;研究了SiO2含量、分布和界面状况等与杂化涂层的表面性能和力学性能的关联与影响.结果表明,SiO2在两种方法制备的杂化涂层中均以Si-O网络的形式存在,原位聚合法中SiO2相的分散性优于共混法;含氟聚丙烯酸酯涂层中引入SiO2相后,涂层性能明显提高,共混法的疏水性优于原位聚合法;二者的力学性能随SiO2相含量变化的趋势相同,原位聚合法略优于共混法.  相似文献   

7.
纳米TiO2催化剂催化降解含酚废水的动力学   总被引:1,自引:0,他引:1  
采用超声溶胶-凝胶法制备了纳米二氧化钛粉末,并利用DSC-TGA和XRD等技术进行了结构表征;采用SGY-1型多功能光化学反应仪对纳米二氧化钛光催化降解含酚废水的动力学特征进行了研究.结果表明,制备的纳米二氧化钛颗粒在酚类废水降解中表现出很好的催化活性,30 min内降解率达90%以上,并满足准一级反应动力学特征.废水中不同酚类化合物的光催化降解速率顺序为:对氨基苯酚>对甲氧基苯酚>对氯苯酚;对氨基苯酚>间氨基苯酚>邻氨基苯酚.  相似文献   

8.
采用溶胶-凝胶法,制备钛酸钡干凝胶.通过DSC对其进行热分析,确定两个煅烧温度:780 ℃和900 ℃.通过DSC,XRD对这两种温度煅烧得到的钛酸钡进行晶相结构表征.结果表明,随着煅烧温度升高,晶粒尺寸逐渐增大,(111)面间距d(111)和α轴逐渐减小,c轴逐渐增大.说明可以通过提高煅烧温度得到常温下为铁电性的四方相钛酸钡晶体,解决了溶胶-凝胶法制备钛酸钡在常温下为顺电性的立方相晶体这一问题.  相似文献   

9.
金属/SiO2复合气凝胶催化剂对一氧化碳氧化的催化   总被引:3,自引:0,他引:3  
采用溶胶-凝胶法和超临界干燥法制备了Cu/SiO2 和Co/SiO2 气凝胶催化剂, 对其结构和形貌进行了XRD、TEM 和比表面分析, 并考察了其对CO氧化的催化性能。实验结果表明, 制得的Cu/SiO2 和Co/SiO2 气凝胶催化剂均保留了气凝胶的纳米网络和高比表面积, 活性组份均匀地分散在纳米级二氧化硅气凝胶载体中, 对CO的氧化均表现出高的催化活性。  相似文献   

10.
La掺杂纳米TiO2的制备及其光催化性能   总被引:3,自引:1,他引:2  
采用溶胶-凝胶法制备了镧掺杂TiO2粉体材料,利用DSC—TG和XRD进行了结构表征,以TNT为目标降解物研究了其光催化性能。结果表明,La掺杂抑制了TiO2的晶粒增长和晶型的转变,适量的La掺杂提高了TiO2的光催化活性,La掺杂量(摩尔分数)为2%时光催化活性最佳,La掺杂过量会降低其光催化活性。  相似文献   

11.
《防务技术》2020,16(3):564-570
An experimental study was carried out to investigate the flame propagation and thermal hazard of the premixed N2O/fuel mixtures, including NH3, C3H8 and C2H4. The study provided the high speed video images and data about the flame locations, propagation patterns, overpressures and the quenching diameters during the course of combustion in different channels to elucidate the dynamics of various combustion processes. The onset decomposition temperature was determined using high-performance adiabatic calorimetry. It was shown that the order of the flame acceleration rate and thermal hazard was N2O/C2H4>N2O/C3H8>N2O/NH3.  相似文献   

12.
二维 DFT 和 DCT 的 Systolic 阵列   总被引:1,自引:0,他引:1       下载免费PDF全文
超级计算中一个活跃的研究领域是将某些有限和,如离散富里叶变换(DFT)、离散余弦变换(DCT),映射到多处理机阵列上。本文首先通过二维DFT的行列分解算法流程图,给出了计算二维DFT的二种Systolic阵列:一种是由N_1个处理器组成的线性阵列,所花时间步为O(N_1N_2)(设二维DFT为N_1×N_2长的),与行列分解算法在单处理机上顺序执行所花时间相比,加速比为O(N)(设N_1=N_2=N)。这一结果无论是在时间消耗,还是在PE数量上都是目前最优的。另一种是由N_1×N_2个处理器组成的矩形阵列,所需时间为O(N_1+N_2),与行列算法在单处理机上顺序运行所花时间相比,加速比为O(N~2)(这里仍假定N_1=N_2=N)。本文还给出了二维DCT的与二维DFT相似的Systoilc阵列结构。不难将上述阵列推广到多维的情况。  相似文献   

13.
《防务技术》2020,16(3):705-711
In this study, based on two attractive energetic compounds pentazole (PZ) and tetraazacubane (TAC), a new family of high energy and high nitrogen compounds pentazolyltetraazacubanes were designed. Then, a different number of NH2 or NO2 groups were introduced into the system to further adjust the property. The structures, properties, and the structure-property relationship of designed molecules were investigated theoretically. The results showed that all nine designed compounds have extremely high heat of formation (HOF, 1226-2734 kJ/mol), good density (1.73–1.88 g/cm3), high detonation velocity (8.30–9.35 km/s), high detonation pressure (29.8–39.7 GPa) and acceptable sensitivity (ΔV: 41-87 Å3). These properties could be effectively positive adjusted by replacing one or two PZ rings by NH2 or/and NO2 groups, especially for the energy and sensitivity performance, which were increased and decreased obviously, respectively. As a result, two designed pentazolyltetraazacubanes were predicted to have higher energy and lower sensitivity than the famous high energy compound in use 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane, while two others have better combination property than 1,3,5-Trinitro-1,3,5-triazacyclohexane. In all, four new pentazolyltetraazacubanes with good combination performance were successfully designed by combining PZ with TAC, and the further property adjustment strategy of introducing a suitable amount of NH2/NO2 groups into the system. This work may help develop new cage energetic compounds.  相似文献   

14.
《防务技术》2022,18(10):1834-1841
In the study, the two-color pyrometer technique was used to measure the transient temperature field of emulsion explosives with different contents of TiH2 powders. The experimental results showed that the introduction of TiH2 powders could significantly increase the explosion temperature and fireball duration of emulsion explosive. When emulsion explosives were ignited, the average explosion temperature of pure emulsion explosive continuously decreased while emulsion explosives added with TiH2 powders increased at first and then decreased. When the content of TiH2 powders was 6 mass%, the explosion average temperature reached its maximum value of 3095 K, increasing by 43.7% as compared with that of pure emulsion explosive. In addition, the results of air blast experiment and explosion heat test showed that the variation trends of shock wave parameters, explosion heat and theoretical explosion temperature of emulsion explosives with different contents of TiH2 powders were basically consistent with that of explosion temperature measured by the two-color pyrometer technique. In conclusion, the two-color pyrometer technique would be conducive to the formula design of emulsion explosive by understanding the explosion temperature characteristics.  相似文献   

15.
《防务技术》2020,16(2):425-431
This work describes the preparation and study of the properties of composite nanoparticles prepared by the sol-gel method which consists of two materials (Al2O3-CaO), and study the effect of these nanoparticles on the mechanical behavior of a polymer blend (EP 4% + 96% UPE). The powder was evaluated by X-ray diffraction analysis, scanning electron microscopy analysis (SEM), particle size analysis, and energy dispersive X-ray analysis (EDX). The mechanical behavior of the composite material was assessed by tensile test, bending test and hardness test. The evaluation results of the composite nanoparticles showed good distribution of the chemical composition between aluminum oxide and calcium oxide, smoothness in particles' size at calcination in high and low temperatures, formation of different shapes of nanoparticles and different (kappa and gamma) phases of the Al2O3 particles. The results of mechanical behavior tests showed marked improvement in the mechanical properties of the resulted composite material, especially at 1.5%, compared with polymer blend material without nano powder addition. The tensile properties improved about (24 and 14.9) % and bending resistance about (23.5 and 16.8) % and hardness by (25 and 22) % when adding particles of size (63.8 and 68.6) respectively. Therefore, this reflects the efficiency of the proposed method to manufacture the nanocomposite powder and the possibility of using this powder as a strengthening material for the composite materials and using these composite materials in bio applications, especially in the fabrication of artificial limbs.  相似文献   

16.
《防务技术》2020,16(1):251-256
The hexanitrostilben (HNS) is a thermally stable explosive that can be prepared from hexanitrobibenzyl (HNBB). Therefore, the investigation of thermal stability of HNBB can be important in the yield of preparation of HNS. The decomposition kinetic of HNBB and HNS are studied by non-isothermal gravimetric method. The TG/DTG curves in non-isothermal method are obtained in range of 25°C–400 °C at heating rates of 3 °C/min, 5 °C/min, 8 °C/min, 10 °C/min and 12 °C/min. The data of weight-temperature are used for calculation of activation energy (Ea) of thermal decomposition reactions by methods of Ozawa, Kissinger, Ozawa-Flynn-Wall (OFW) and Kissinger-Akahira-Sunose (KAS) as model-free methods and Strink's equation as model-fitting method. The compensation effect is used for prediction of mechanism and determination of pre-exponential factor (lnA) of the decomposition reaction. A reduction 60 kj/mol for the average of activation energy of thermal decomposition reaction of HNBB is obtained versus HNS. This result shows the lower thermal stability of HNBB in comparison to HNS. The Avrami equation (A3/2) with function f(α) = 3/2(1-α)[-ln(1-α)]1/3 indicates the predicted mechanism for thermal decomposition reaction both explosives.  相似文献   

17.
Insensitive energetic materials are promising in the defense weapons field. However, energetic materials still suffer from great challenges and the concern about their safety limits their utilization. In this work, insensitive energetic explosive 3,3′-diamino-4,4′-azoxyfurazan/hexahydro-1,3,5-trinitro-1,3,5-triazine (DAAF/RDX) microspheres were fabricated by self-assembly method. Rod-like DAAF/RDX was prepared by mechanical ball milling for comparison. DAAF/RDX composites with different mass ratios (90:10, 80:20, and 70:30) were obtained. The morphologies and structures of as-obtained DAAF/RDX composites were characterized by scanning electron microscopy (SEM), powder x-ray diffraction (PXRD) and fourier transform infrared spectroscopy (FT-IR). The results showed that DAAF/RDX microspheres exhibited regular shaped microspheres with sizes from 0.5 to 1.2 μm. There was no crystal transition during the modification process. The thermal properties of as-obtained materials were then evaluated by differential scanning calorimetry (DSC) and materials studio software. DAAF/RDX microspheres showed an advanced decomposition peak temperature compared with rod-like DAAF/RDX. The binding energy and peak temperature values at zero βi (TP0) of DAAF/RDX (90:10) increased by 36.77 kJ/mol, 1.6 °C, and 58.11 kJ/mol, 12.3 °C compared to DAAF/RDX (80:20) and DAAF/RDX (70:30), indicating the better thermal stability of DAAF/RDX (90:10). The characteristic drop height (H50) of DAAF/RDX (higher than 100 cm) composites was higher than that of raw RDX (25 cm), suggesting significant improvements in mechanical safety. The preparation of DAAF/RDX microspheres is promising for the desensitization of RDX and useful for the formation of other materials and future wide applications.  相似文献   

18.
Suppose that observations from populations π1, …, πk (k ≥ 1) are normally distributed with unknown means μ1., μk, respectively, and a common known variance σ2. Let μ[1] μ … ≤ μ[k] denote the ranked means. We take n independent observations from each population, denote the sample mean of the n observation from π1 by X i (i = 1, …, k), and define the ranked sample means X [1] ≤ … ≤ X [k]. The problem of confidence interval estimation of μ(1), …,μ[k] is stated and related to previous work (Section 1). The following results are obtained (Section 2). For i = 1, …, k and any γ(0 < γ < 1) an upper confidence interval for μ[i] with minimal probability of coverage γ is (? ∞, X [i]+ h) with h = (σ/n1/2) Φ?11/k-i+1), where Φ(·) is the standard normal cdf. A lower confidence interval for μ[i] with minimal probability of coverage γ is (X i[i]g, + ∞) with g = (σ/n1/2) Φ?11/i). For the upper confidence interval on μ[i] the maximal probability of coverage is 1– [1 – γ1/k-i+1]i, while for the lower confidence interval on μ[i] the maximal probability of coverage is 1–[1– γ1/i] k-i+1. Thus the maximal overprotection can always be calculated. The overprotection is tabled for k = 2, 3. These results extend to certain translation parameter families. It is proven that, under a bounded completeness condition, a monotone upper confidence interval h(X 1, …, X k) for μ[i] with probability of coverage γ(0 < γ < 1) for all μ = (μ[1], …,μ[k]), does not exist.  相似文献   

19.
《防务技术》2022,18(9):1688-1696
The Al and La elements are added to the Sn9Zn alloy to obtain the fusible alloy for the mitigation devices of solid propellant rocket motors. Differential scanning calorimetry (DSC), metallographic analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), tensile testing and fracture analysis were used to study the effect of Al and La elements on the microstructure, melting characteristics, and mechanical properties of the Sn9Zn alloy. Whether the fusible diaphragm can effectively relieve pressure was investigated by the hydrostatic pressure at high-temperature test. Experimental results show that the melting point of the Sn9Zn-0.8Al0·2La and Sn9Zn–3Al0·2La fusible alloys can meet the predetermined working temperature of ventilation. The mechanical properties of those are more than 35% higher than that of the Sn9Zn alloy at −50 °C–70 °C, and the mechanical strength is reduced by 80% at 175 °C. It is proven by the hydrostatic pressure at high-temperature test that the fusible diaphragm can relieve pressure effectively and can be used for the design of the mitigation devices of solid propellant rocket motors.  相似文献   

20.
添加SiC微粉对硅树脂先驱体转化3D Cf/Si-O-C材料性能的影响   总被引:1,自引:0,他引:1  
以三维碳纤维织物和廉价的硅树脂为原料,采用先驱体转化工艺制备3D G/Si-O-C材料,考察了浸渍液中添加SiC填料对材料微观结构、力学性能和抗氧化性能影响.结果表明:添加适量的SiC填料有助于减少基体孔隙,改善界面结合,从而提高材料的力学性能;而SiC含量过高时,容易在材料内部形成闭孔,从而导致材料力学性能下降.当SiC微粉含量为18.2%时,材料具有最好的力学性能,弯曲强度和断裂韧度分别为421.3MPa和13.0 MPa·m1/2;而材料的抗氧化性能随着SiC微粉含量的增加而增加,当SiC微粉含量为25.0%时,材料的弯曲强度保留率最高,达到了89.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号