首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Previous methods for solving the nonlinear one-parametric linear programming problem min {c(t)Tx |Ax = b, x ≥ 0} for t ? [α,β] were based on the simplex method using a considerably extended tableau. The proposed method avoids such an extension. A finite sequence of feasible bases (Bk | k = 1, 2, …, r) optimal in [tk, tk+1] for k = 1, 2, …,r with α = t1 < t2 < … < tr+1 = β is determined using the zeroes of a set of nonlinear functions. Computational experience is discussed in the special case of t-norm transportation problems.  相似文献   

2.
The problem of determining a vector that places a system in a state of equilibrium is studied with the aid of mathematical programming. The approach derives from the logical equivalence between the general equilibrium problem and the complementarity problem, the latter being explicitly concerned with finding a point in the set S = {x: < x, g(x)> = 0, g(x) ≦ 0, x ≧ 0}. An associated nonconvex program, min{? < x, g(x) > : g(x) ≦ 0, x ≧ 0}, is proposed whose solution set coincides with S. When the excess demand function g(x) meets certain separability conditions, equilibrium solutions are obtained by using an established branch and bound algorithm. Because the best upper bound is known at the outset, an independent check for convergence can be made at each iteration of the algorithm, thereby greatly increasing its efficiency. A number of examples drawn from economic and network theory are presented in order to demonstrate the computational aspects of the approach. The results appear promising for a wide range of problem sizes and types, with solutions occurring in a relatively small number of iterations.  相似文献   

3.
A set of edges D called an isolation set, is said to isolate a set of nodes R from an undirected network if every chain between the nodes in R contains at least one edge from the set D. Associated with each edge of the network is a positive cost. The isolation problem is concerned with finding an isolation set such that the sum of its edge costs is a minimum. This paper formulates the problem of determining the minimal cost isolation as a 0–1 integer linear programming problem. An algorithm is presented which applies a branch and bound enumerative scheme to a decomposed linear program whose dual subproblems are minimal cost network flow problems. Computational results are given. The problem is also formulated as a special quadratic assignment problem and an algorithm is presented that finds a local optimal solution. This local solution is used for an initial bound.  相似文献   

4.
Job shop scheduling with a bank of machines in parallel is important from both theoretical and practical points of view. Herein we focus on the scheduling problem of minimizing the makespan in a flexible two-center job shop. The first center consists of one machine and the second has k parallel machines. An easy-to-perform approximate algorithm for minimizing the makespan with one-unit-time operations in the first center and k-unit-time operations in the second center is proposed. The algorithm has the absolute worst-case error bound of k − 1 , and thus for k = 1 it is optimal. Importantly, it runs in linear time and its error bound is independent of the number of jobs to be processed. Moreover, the algorithm can be modified to give an optimal schedule for k = 2 .  相似文献   

5.
Let X1 < X2 <… < Xn denote an ordered sample of size n from a Weibull population with cdf F(x) = 1 - exp (?xp), x > 0. Formulae for computing Cov (Xi, Xj) are well known, but they are difficult to use in practice. A simple approximation to Cov(Xi, Xj) is presented here, and its accuracy is discussed.  相似文献   

6.
We study an (R, s, S) inventory control policy with stochastic demand, lost sales, zero lead‐time and a target service level to be satisfied. The system is modeled as a discrete time Markov chain for which we present a novel approach to derive exact closed‐form solutions for the limiting distribution of the on‐hand inventory level at the end of a review period, given the reorder level (s) and order‐up‐to level (S). We then establish a relationship between the limiting distributions for adjacent values of the reorder point that is used in an efficient recursive algorithm to determine the optimal parameter values of the (R, s, S) replenishment policy. The algorithm is easy to implement and entails less effort than solving the steady‐state equations for the corresponding Markov model. Point‐of‐use hospital inventory systems share the essential characteristics of the inventory system we model, and a case study using real data from such a system shows that with our approach, optimal policies with significant savings in inventory management effort are easily obtained for a large family of items.  相似文献   

7.
We consider a single item inventory system with positive and negative stock fluctuations. Items can be purchased from a central stock, n items can be returned for a cost R + rn, and a linear inventory carrying cost is charged. It is shown that for minimizing the asymptotic cost rate when returns are a significant fraction of stock usage, a two-critical-number policy (a,b) is optimal, where b is the trigger level for returns and b – a is the return quantity. The values for a and b are found, as well as the operating characteristics of the system. We also consider the optimal return decision to make at time zero and show that it is partially determined by a and b.  相似文献   

8.
This article studies the classical single‐item economic lot‐sizing problem with constant capacities, fixed‐plus‐linear order costs, and concave inventory costs, where backlogging is allowed. We propose an O(T3) optimal algorithm for the problem, which improves upon the O(T4) running time of the famous algorithm developed by Florian and Klein (Manage Sci18 (1971) 12–20). Instead of using the standard dynamic programming approach by predetermining the minimal cost for every possible subplan, we develop a backward dynamic programming algorithm to obtain a more efficient implementation. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

9.
A dynamic version of the transportation (Hitchcock) problem occurs when there are demands at each of n sinks for T periods which can be fulfilled by shipments from m sources. A requirement in period t2 can be satisfied by a shipment in the same period (a linear shipping cost is incurred) or by a shipment in period t1 < t2 (in addition to the linear shipping cost a linear inventory cost is incurred for every period in which the commodity is stored). A well known method for solving this problem is to transform it into an equivalent single period transportation problem with mT sources and nT sinks. Our approach treats the model as a transshipment problem consisting of T, m source — n sink transportation problems linked together by inventory variables. Storage requirements are proportional to T2 for the single period equivalent transportation algorithm, proportional to T, for our algorithm without decomposition, and independent of T for our algorithm with decomposition. This storage saving feature enables much larger problems to be solved than were previously possible. Futhermore, we can easily incorporate upper bounds on inventories. This is not possible in the single period transportation equivalent.  相似文献   

10.
Scheduling a set of n jobs on a single machine so as to minimize the completion time variance is a well‐known NP‐hard problem. In this paper, we propose a sequence, which can be constructed in O(n log n) time, as a solution for the problem. Our primary concern is to establish the asymptotical optimality of the sequence within the framework of probabilistic analysis. Our main result is that, when the processing times are randomly and independently drawn from the same uniform distribution, the sequence is asymptotically optimal in the sense that its relative error converges to zero in probability as n increases. Other theoretical results are also derived, including: (i) When the processing times follow a symmetric structure, the problem has 2⌊(n−1)/2⌋ optimal sequences, which include our proposed sequence and other heuristic sequences suggested in the literature; and (ii) when these 2⌊(n−1)/2⌋ sequences are used as approximate solutions for a general problem, our proposed sequence yields the best approximation (in an average sense) while another sequence, which is commonly believed to be a good approximation in the literature, is interestingly the worst. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 373–398, 1999  相似文献   

11.
We consider a multi‐stage inventory system composed of a single warehouse that receives a single product from a single supplier and replenishes the inventory of n retailers through direct shipments. Fixed costs are incurred for each truck dispatched and all trucks have the same capacity limit. Costs are stationary, or more generally monotone as in Lippman (Management Sci 16, 1969, 118–138). Demands for the n retailers over a planning horizon of T periods are given. The objective is to find the shipment quantities over the planning horizon to satisfy all demands at minimum system‐wide inventory and transportation costs without backlogging. Using the structural properties of optimal solutions, we develop (1) an O(T2) algorithm for the single‐stage dynamic lot sizing problem; (2) an O(T3) algorithm for the case of a single‐warehouse single‐retailer system; and (3) a nested shortest‐path algorithm for the single‐warehouse multi‐retailer problem that runs in polynomial time for a given number of retailers. To overcome the computational burden when the number of retailers is large, we propose aggregated and disaggregated Lagrangian decomposition methods that make use of the structural properties and the efficient single‐stage algorithm. Computational experiments show the effectiveness of these algorithms and the gains associated with coordinated versus decentralized systems. Finally, we show that the decentralized solution is asymptotically optimal. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

12.
Adequate prediction of a response variable using a multiple linear regression model is shown in this article to be related to the presence of multicollinearities among the predictor variables. If strong multicollinearities are present in the data, this information can be used to determine when prediction is likely to be accurate. A region of prediction, R, is proposed as a guide for prediction purposes. This region is related to a prediction interval when the matrix of predictor variables is of full column rank, but it can also be used when the sample is undersized. The Gorman-Toman ten-variable data is used to illustrate the effectiveness of the region R.  相似文献   

13.
Suppose that observations from populations π1, …, πk (k ≥ 1) are normally distributed with unknown means μ1., μk, respectively, and a common known variance σ2. Let μ[1] μ … ≤ μ[k] denote the ranked means. We take n independent observations from each population, denote the sample mean of the n observation from π1 by X i (i = 1, …, k), and define the ranked sample means X [1] ≤ … ≤ X [k]. The problem of confidence interval estimation of μ(1), …,μ[k] is stated and related to previous work (Section 1). The following results are obtained (Section 2). For i = 1, …, k and any γ(0 < γ < 1) an upper confidence interval for μ[i] with minimal probability of coverage γ is (? ∞, X [i]+ h) with h = (σ/n1/2) Φ?11/k-i+1), where Φ(·) is the standard normal cdf. A lower confidence interval for μ[i] with minimal probability of coverage γ is (X i[i]g, + ∞) with g = (σ/n1/2) Φ?11/i). For the upper confidence interval on μ[i] the maximal probability of coverage is 1– [1 – γ1/k-i+1]i, while for the lower confidence interval on μ[i] the maximal probability of coverage is 1–[1– γ1/i] k-i+1. Thus the maximal overprotection can always be calculated. The overprotection is tabled for k = 2, 3. These results extend to certain translation parameter families. It is proven that, under a bounded completeness condition, a monotone upper confidence interval h(X 1, …, X k) for μ[i] with probability of coverage γ(0 < γ < 1) for all μ = (μ[1], …,μ[k]), does not exist.  相似文献   

14.
We consider a dynamic lot‐sizing model with production time windows where each of n demands has earliest and latest production due dates and it must be satisfied during the given time window. For the case of nonspeculative cost structure, an O(nlogn) time procedure is developed and it is shown to run in O(n) when demands come in the order of latest production due dates. When the cost structure is somewhat general fixed plus linear that allows speculative motive, an optimal procedure with O(T4) is proposed where T is the length of a planning horizon. Finally, for the most general concave production cost structure, an optimal procedure with O(T5) is designed. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

15.
The purpose of this article is to present an algorithm for globally maximizing the ratio of two convex functions f and g over a convex set X. To our knowledge, this is the first algorithm to be proposed for globally solving this problem. The algorithm uses a branch and bound search to guarantee that a global optimal solution is found. While it does not require the functions f and g to be differentiable, it does require that subgradients of g can be calculated efficiently. The main computational effort of the algorithm involves solving a sequence of subproblems that can be solved by convex programming methods. When X is polyhedral, these subproblems can be solved by linear programming procedures. Because of these properties, the algorithm offers a potentially attractive means for globally maximizing ratios of convex functions over convex sets. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

16.
The significance of integrating reliability into logistics performance has been established [The Logistics Performance Index and Its Indicators, World Bank International Trade and Transport Departments, (2010)]. Hence, as a response to the work by the World Bank, the present article aims to evaluate the performance index Rb,d of logistics systems as the probability that a specified demand d can be distributed successfully through multistate arc capacities from the source to the destination under the constraint that the total distribution cost should not exceed the cost limitation b. This article provides a pioneering approach for a straightforward computation of the performance index Rb,d. The proposed algorithm is a hybrid between the polynomial time capacity‐scaling algorithm, which was presented by Edmonds and Karp [JACM 19 (1972)], and the decomposition algorithm, which was presented by Jane and Laih [IEEE (2008)]. Currently, the proposed approach is the only algorithm that can directly compute Rb,d. An illustration of the proposed algorithm is presented. The results of the computational experiments indicate that the presented algorithm outperforms existing algorithms. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

17.
In this paper, we consider a general covering problem in which k subsets are to be selected such that their union covers as large a weight of objects from a universal set of elements as possible. Each subset selected must satisfy some structural constraints. We analyze the quality of a k-stage covering algorithm that relies, at each stage, on greedily selecting a subset that gives maximum improvement in terms of overall coverage. We show that such greedily constructed solutions are guaranteed to be within a factor of 1 − 1/e of the optimal solution. In some cases, selecting a best solution at each stage may itself be difficult; we show that if a β-approximate best solution is chosen at each stage, then the overall solution constructed is guaranteed to be within a factor of 1 − 1/eβ of the optimal. Our results also yield a simple proof that the number of subsets used by the greedy approach to achieve entire coverage of the universal set is within a logarithmic factor of the optimal number of subsets. Examples of problems that fall into the family of general covering problems considered, and for which the algorithmic results apply, are discussed. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 615–627, 1998  相似文献   

18.
Extending Sastry's result on the uncapacitated two‐commodity network design problem, we completely characterize the optimal solution of the uncapacitated K‐commodity network design problem with zero flow costs for the case when K = 3. By solving a set of shortest‐path problems on related graphs, we show that the optimal solutions can be found in O(n3) time when K = 3, where n is the number of nodes in the network. The algorithm depends on identifying a list of “basic patterns”; the number of basic patterns grows exponentially with K. We also show that the uncapacitated K‐commodity network design problem can be solved in O(n3) time for general K if K is fixed; otherwise, the time for solving the problem is exponential. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

19.
Let be a basic solution to the linear programming problem subject to: where R is the index set associated with the nonbasic variables. If all of the variables are constrained to be nonnegative integers and xu is not an integer in the basic solution, the linear constraint is implied. We prove that including these “cuts” in a specified way yields a finite dual simplex algorithm for the pure integer programming problem. The relation of these modified Dantzig cuts to Gomory cuts is discussed.  相似文献   

20.
Decomposition algorithms for finding a shortest path between a source node and a sink node of an arbitrary distance network are developed. Different decomposition algorithms are proposed for different network topologies. Since Shier's algorithm compares very favorably with other decomposition algorithms in all the network topologies, we compare our algorithms against Shier's algorithm. It is shown that the efficiency of the proposed algorithms compares very favorably with Shier's algorithm. For special types of networks the computational requirements of the proposed algorithm is a polynomial of O(n2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号