首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We study a setting with a single type of resource and with several players, each associated with a single resource (of this type). Unavailability of these resources comes unexpectedly and with player‐specific costs. Players can cooperate by reallocating the available resources to the ones that need the resources most and let those who suffer the least absorb all the costs. We address the cost savings allocation problem with concepts of cooperative game theory. In particular, we formulate a probabilistic resource pooling game and study them on various properties. We show that these games are not necessarily convex, do have non‐empty cores, and are totally balanced. The latter two are shown via an interesting relationship with Böhm‐Bawerk horse market games. Next, we present an intuitive class of allocation rules for which the resulting allocations are core members and study an allocation rule within this class of allocation rules with an appealing fairness property. Finally, we show that our results can be applied to a spare parts pooling situation.  相似文献   

2.
This article studies flexible capacity strategy (FCS) under oligopoly competition with uncertain demand. Each firm utilizes either the FCS or inflexible capacity strategy (IFCS). Flexible firms can postpone their productions until observing the actual demand, whereas inflexible firms cannot. We formulate a new asymmetrical oligopoly model for the problem, and obtain capacity and production decisions of the firms at Nash equilibrium. It is interesting to verify that cross‐group competition determines the capacity allocation between the two groups of firms, while intergroup competition determines the market share within each group. Moreover, we show that the two strategies coexist among firms only when cost differentiation is medium. Counterintuitively, flexible firms benefit from increasing production cost when the inflexible competition intensity is sufficiently high. This is because of retreat of inflexible firms, flexibility effect, and the corresponding high price. We identify conditions under which FCS is superior than IFCS. We also demonstrate that flexible firms benefit from increasing demand uncertainty. However, when demand variance is not very large, flexible firms may be disadvantaged. We further investigate the effects of cross‐group and intergroup competition on individual performance of the firms. We show that as flexible competition intensity increases, inflexible firms are mainly affected by the cross‐group competition first and then by the intergroup competition, whereas flexible firms are mainly affected by the intergroup competition. Finally, we examine endogenous flexibility and identify its three drivers: cost parameters, cross‐group competition, and intergroup competition. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 117–138, 2017  相似文献   

3.
In Assemble‐To‐Order (ATO) systems, situations may arise in which customer demand must be backlogged due to a shortage of some components, leaving available stock of other components unused. Such unused component stock is called remnant stock. Remnant stock is a consequence of both component ordering decisions and decisions regarding allocation of components to end‐product demand. In this article, we examine periodic‐review ATO systems under linear holding and backlogging costs with a component installation stock policy and a First‐Come‐First‐Served (FCFS) allocation policy. We show that the FCFS allocation policy decouples the problem of optimal component allocation over time into deterministic period‐by‐period optimal component allocation problems. We denote the optimal allocation of components to end‐product demand as multimatching. We solve the multi‐matching problem by an iterative algorithm. In addition, an approximation scheme for the joint replenishment and allocation optimization problem with both upper and lower bounds is proposed. Numerical experiments for base‐stock component replenishment policies show that under optimal base‐stock policies and optimal allocation, remnant stock holding costs must be taken into account. Finally, joint optimization incorporating optimal FCFS component allocation is valuable because it provides a benchmark against which heuristic methods can be compared. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 158–169, 2015  相似文献   

4.
Multi‐issue allocation situations study problems where an estate must be divided among a group of agents. The claim of each agent is a vector specifying the amount claimed by each agent on each issue. We present a two‐stage rule. First, we divide the estate among the issues following the constrained equal awards rule. Second, the amount assigned to each issue is divided among the agents in proportion to their demands on this issue. We apply the rule to two real‐world problems: the distribution of natural resources between countries and the distribution of budget for education and research between universities.  相似文献   

5.
We consider several independent decision makers who stock expensive, low‐demand spare parts for their high‐tech machines. They can collaborate by full pooling of their inventories via free transshipments. We examine the stability of such pooling arrangements, and we address the issue of fairly distributing the collective holding and downtime costs over the participants, by applying concepts from cooperative game theory. We consider two settings: one where each party maintains a predetermined stocking level and one where base stock levels are optimized. For the setting with fixed stocking levels, we unravel the possibly conflicting effects of implementing a full pooling arrangement and study these effects separately to establish intuitive conditions for existence of a stable cost allocation. For the setting with optimized stocking levels, we provide a simple proportional rule that accomplishes a population monotonic allocation scheme if downtime costs are symmetric among participants. Although our whole analysis is motivated by spare parts applications, all results are also applicable to other pooled resource systems of which the steady‐state behavior is equivalent to that of an Erlang loss system. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

6.
We consider two specially structured assemble‐to‐order (ATO) systems—the N‐ and W‐systems—under continuous review, stochastic demand, and nonidentical component replenishment leadtimes. Using a hybrid approach that combines sample‐path analysis, linear programming, and the tower property of conditional expectation, we characterize the optimal component replenishment policy and common‐component allocation rule, present comparative statics of the optimal policy parameters, and show that some commonly used heuristic policies can lead to significant optimality loss. The optimality results require certain symmetry in the cost parameters. In the absence of this symmetry, we show that, for systems with high demand volume, the asymptotically optimal policy has essentially the same structure; otherwise, the optimal policies have no clear structure. For these latter systems, we develop heuristic policies and show their effectiveness. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 62: 617–645, 2015  相似文献   

7.
We examine capacity allocation mechanisms in a supply chain comprising a monopolistic supplier and two competing retailers with asymmetric market powers. The supplier allocates limited capacity to retailers according to uniform, proportional, or lexicographic mechanism. We study the impact of these allocation mechanisms on supplier pricing decisions and retailer ordering behavior. With individual order size no greater than supplier capacity, we show that all three mechanisms guarantee equilibrium ordering. We provide precise structures of retailer ordering decisions in Nash and dominant equilibria. Further, we compare the mechanisms from the perspective of the supplier, the retailers, and the supply chain. We show that regardless of whether retailer market powers are symmetric, lexicographic allocation with any priority sequence of retailers is better than the other two mechanisms for the supplier. Further, under lexicographic allocation, the supplier gains more profit by granting higher priority to the retailer with greater market power. We also extend our study to the case with multiple retailers. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 85–107, 2017  相似文献   

8.
Stochastic network design is fundamental to transportation and logistic problems in practice, yet faces new modeling and computational challenges resulted from heterogeneous sources of uncertainties and their unknown distributions given limited data. In this article, we design arcs in a network to optimize the cost of single‐commodity flows under random demand and arc disruptions. We minimize the network design cost plus cost associated with network performance under uncertainty evaluated by two schemes. The first scheme restricts demand and arc capacities in budgeted uncertainty sets and minimizes the worst‐case cost of supply generation and network flows for any possible realizations. The second scheme generates a finite set of samples from statistical information (e.g., moments) of data and minimizes the expected cost of supplies and flows, for which we bound the worst‐case cost using budgeted uncertainty sets. We develop cutting‐plane algorithms for solving the mixed‐integer nonlinear programming reformulations of the problem under the two schemes. We compare the computational efficacy of different approaches and analyze the results by testing diverse instances of random and real‐world networks. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 154–173, 2017  相似文献   

9.
Spatial pricing means a retailer price discriminates its customers based on their geographic locations. In this article, we study how an online retailer should jointly allocate multiple products and facilitate spatial price discrimination to maximize profits. When deciding between a centralized product allocation ((i.e., different products are allocated to the same fulfillment center) and decentralized product allocation (ie, different products are allocated to different fulfillment centers), the retailer faces the tradeoff between shipment pooling (ie, shipping multiple products in one package), and demand localization (ie, stocking products to satisfy local demand) based on its understanding of customers' product valuations. In our basic model, we consider two widely used spatial pricing policies: free on board (FOB) pricing that charges each customer the exact amount of shipping cost, and uniform delivered (UD) pricing that provides free shipping. We propose a stylized model and find that centralized product allocation is preferred when demand localization effect is relatively low or shipment pooling benefit is relatively high under both spatial pricing policies. Moreover, centralized product allocation is more preferred under the FOB pricing which encourages the purchase of virtual bundles of multiple products. Furthermore, we respectively extend the UD and FOB pricing policies to flat rate shipping (ie, the firm charges a constant shipping fee for each purchase), and linear rate shipping (ie, the firm sets the shipping fee as a fixed proportion of firm's actual fulfillment costs). While similar observations from the basic model still hold, we find the firm can improve its profit by sharing the fulfillment cost with its customers via the flat rate or linear rate shipping fee structure.  相似文献   

10.
Substitutable product inventory problem is analyzed using the concepts of stochastic game theory. It is assumed that there are two substitutable products that are sold by different retailers and the demand for each product is random. Game theoretic nature of this problem is the result of substitution between products. Since retailers compete for the substitutable demand, ordering decision of each retailer depends on the ordering decision of the other retailer. Under the discounted payoff criterion, this problem is formulated as a two‐person nonzero‐sum stochastic game. In the case of linear ordering cost, it is shown that there exists a Nash equilibrium characterized by a pair of stationary base stock strategies for the infinite horizon problem. This is the unique Nash equilibrium within the class of stationary base stock strategies. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 359–375, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10018  相似文献   

11.
This paper considers optimal staffing in service centers. We construct models for profit and cost centers using dynamic rate queues. To allow for practical optimal controls, we approximate the queueing process using a Gaussian random variable with equal mean and variance. We then appeal to the Pontryagin's maximum principle to derive a closed form square root staffing (SRS) rule for optimal staffing. Unlike most traditional SRS formulas, the main parameter in our formula is not the probability of delay but rather a cost‐to‐benefit ratio that depends on the shadow price. We show that the delay experienced by customers can be interpreted in terms of this ratio. Throughout the article, we provide theoretical support of our analysis and conduct extensive numerical experiments to reinforce our findings. To this end, various scenarios are considered to evaluate the change in the staffing levels as the cost‐to‐benefit ratio changes. We also assess the change in the service grade and the effects of a service‐level agreement constraint. Our analysis indicates that the variation in the ratio of customer abandonment over service rate particularly influences staffing levels and can lead to drastically different policies between profit and cost service centers. Our main contribution is the introduction of new analysis and managerial insights into the nonstationary optimal staffing of service centers, especially when the objective is to maximize profitability. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 615–630, 2017  相似文献   

12.
We consider price and capacity decisions for a profit‐maximizing service provider in a single server queueing system, in which customers are boundedly rational and decide whether to join the service according to a multinomial logit model. We find two potential price‐capacity pair solutions for the first‐order condition of the profit‐maximizing problem. Profit is maximized at the solution with a larger capacity, but minimized at the smaller one. We then consider a dynamically adjusting capacity system to mimic a real‐life situation and find that the maximum can be reached only when the initial service rate is larger than a certain threshold; otherwise, the system capacity and demand shrink to zero. We also find that a higher level of customers’ bounded rationality does not necessarily benefit a firm, nor does it necessarily allow service to be sustained. We extend our analysis to a setting in which customers’ bounded rationality level is related to historical demand and find that such a setting makes service easier to sustain. Finally we find that bounded rationality always harms social welfare.  相似文献   

13.
This article addresses a single‐item, finite‐horizon, periodic‐review coordinated decision model on pricing and inventory control with capacity constraints and fixed ordering cost. Demands in different periods are random and independent of each other, and their distributions depend on the price in the current period. Each period's stochastic demand function is the additive demand model. Pricing and ordering decisions are made at the beginning of each period, and all shortages are backlogged. The objective is to find an optimal policy that maximizes the total expected discounted profit. We show that the profit‐to‐go function is strongly CK‐concave, and the optimal policy has an (s,S,P) ‐like structure. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

14.
This article introduces maximum cooperative purchasing (MCP)‐situations, a new class of cooperative purchasing situations. Next, an explicit alternative mathematical characterization of the nucleolus of cooperative games is provided. The allocation of possible cost savings in MCP‐situations, in which the unit price depends on the largest order quantity within a group of players, is analyzed by defining corresponding cooperative MCP‐games. We show that a decreasing unit price is a sufficient condition for a nonempty core: there is a set of marginal vectors that belong to the core. The nucleolus of an MCP‐game can be derived in polynomial time from one of these marginal vectors. To show this result, we use the new mathematical characterization for the nucleolus for cooperative games. Using the decomposition of an MCP‐game into unanimity games, we find an explicit expression for the Shapley value. Finally, the behavior of the solution concepts is compared numerically. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 607–624, 2013  相似文献   

15.
A generalized parallel replacement problem is considered with both fixed and variable replacement costs, capital budgeting, and demand constraints. The demand constraints specify that a number of assets, which may vary over time, are required each period over a finite horizon. A deterministic, integer programming formulation is presented as replacement decisions must be integer. However, the linear programming relaxation is shown to have integer extreme points if the economies of scale binary variables are fixed. This allows for the efficient computation of large parallel replacement problems as only a limited number of 0–1 variables are required. Examples are presented to provide insight into replacement rules, such as the “no‐splitting‐rule” from previous research, under various demand scenarios. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 40–56, 2000  相似文献   

16.
This article provides conditions under which total‐cost and average‐cost Markov decision processes (MDPs) can be reduced to discounted ones. Results are given for transient total‐cost MDPs with transition rates whose values may be greater than one, as well as for average‐cost MDPs with transition probabilities satisfying the condition that there is a state such that the expected time to reach it is uniformly bounded for all initial states and stationary policies. In particular, these reductions imply sufficient conditions for the validity of optimality equations and the existence of stationary optimal policies for MDPs with undiscounted total cost and average‐cost criteria. When the state and action sets are finite, these reductions lead to linear programming formulations and complexity estimates for MDPs under the aforementioned criteria.© 2017 Wiley Periodicals, Inc. Naval Research Logistics 66:38–56, 2019  相似文献   

17.
In this article, we consider a single machine scheduling problem, in which identical jobs are split into batches of bounded sizes. For each batch, it is allowed to produce less jobs than a given upper bound, that is, some jobs in a batch can be rejected, in which case a penalty is paid for each rejected job. The objective function is the sum of several components, including the sum of the completion times, total delivery cost, and total rejection cost. We reduce this problem to a min‐cost flow problem with a convex quadratic function and adapt Tamir's algorithm for its solution. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 217–224, 2017  相似文献   

18.
In this article, we discuss the optimal allocation problem in a multiple stress levels life‐testing experiment when an extreme value regression model is used for statistical analysis. We derive the maximum likelihood estimators, the Fisher information, and the asymptotic variance–covariance matrix of the maximum likelihood estimators. Three optimality criteria are defined and the optimal allocation of units for two‐ and k‐stress level situations are determined. We demonstrate the efficiency of the optimal allocation of units in a multiple stress levels life‐testing experiment by using real experimental situations discussed earlier by McCool and Nelson and Meeker. Monte Carlo simulations are used to show that the optimality results hold for small sample sizes as well. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

19.
A two‐echelon distribution inventory system with a central warehouse and a number of retailers is considered. The retailers face stochastic demand and replenish from the warehouse, which, in turn, replenishes from an outside supplier. The system is reviewed continuously and demands that cannot be met directly are backordered. Standard holding and backorder costs are considered. In the literature on multi‐echelon inventory control it is standard to assume that backorders at the warehouse are served according to a first come–first served policy (FCFS). This allocation rule simplifies the analysis but is normally not optimal. It is shown that the FCFS rule can, in the worst case, lead to an asymptotically unbounded relative cost increase as the number of retailers approaches infinity. We also provide a new heuristic that will always give a reduction of the expected costs. A numerical study indicates that the average cost reduction when using the heuristic is about two percent. The suggested heuristic is also compared with two existing heuristics. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

20.
This article studies the optimal control of a periodic‐review make‐to‐stock system with limited production capacity and multiple demand classes. In this system, a single product is produced to fulfill several classes of demands. The manager has to make the production and inventory allocation decisions. His objective is to minimize the expected total discounted cost. The production decision is made at the beginning of each period and determines the amount of products to be produced. The inventory allocation decision is made after receiving the random demands and determines the amount of demands to be satisfied. A modified base stock policy is shown to be optimal for production, and a multi‐level rationing policy is shown to be optimal for inventory allocation. Then a heuristic algorithm is proposed to approximate the optimal policy. The numerical studies show that the heuristic algorithm is very effective. © 2011 Wiley Periodicals, Inc. Naval Research Logistics 58: 43–58, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号