首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   76篇
  国内免费   9篇
  2022年   2篇
  2021年   5篇
  2020年   6篇
  2019年   5篇
  2018年   5篇
  2017年   8篇
  2016年   17篇
  2015年   21篇
  2014年   12篇
  2013年   69篇
  2012年   17篇
  2011年   16篇
  2010年   20篇
  2009年   24篇
  2008年   25篇
  2007年   25篇
  2006年   21篇
  2005年   20篇
  2004年   14篇
  2003年   16篇
  2002年   17篇
  2001年   12篇
  2000年   8篇
  1999年   14篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1990年   2篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有415条查询结果,搜索用时 281 毫秒
21.
干扰和多径是影响接收机导航定位性能的两个主要因素。针对卫星导航接收机的抗干扰问题,提出了一种基于两级滤波结构的卫星导航天线阵抗干扰算法。第一级滤波采用功率倒置算法抑制干扰,通过相关解扩提高卫星信号的信噪比,并估计出其空间特征矢量。第二级滤波用估计得到的卫星信号空间特征矢量对第一级滤波输出信号进行加权处理,从而形成指向卫星信号方向的主波束来进一步提高信噪比。仿真结果表明,该算法的性能明显优于功率倒置算法,且非常接近传统的波束形成算法,不需要阵列校正以及姿态测量单元辅助,其实现代价远小于传统的波束形成算法。  相似文献   
22.
We state a balancing problem for mixed model assembly lines with a paced moving conveyor as: Given the daily assembling sequence of the models, the tasks of each model, the precedence relations among the tasks, and the operations parameters of the assembly line, assign the tasks of the models to the workstations so as to minimize the total overload time. Several characteristics of the problem are investigated. A line‐balancing heuristic is proposed based on a lower bound of the total overload time. A practical procedure is provided for estimating the deviation of any given line‐balance solution from the theoretical optimum. Numerical examples are given to illustrate the methodology. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
23.
Extending Sastry's result on the uncapacitated two‐commodity network design problem, we completely characterize the optimal solution of the uncapacitated K‐commodity network design problem with zero flow costs for the case when K = 3. By solving a set of shortest‐path problems on related graphs, we show that the optimal solutions can be found in O(n3) time when K = 3, where n is the number of nodes in the network. The algorithm depends on identifying a list of “basic patterns”; the number of basic patterns grows exponentially with K. We also show that the uncapacitated K‐commodity network design problem can be solved in O(n3) time for general K if K is fixed; otherwise, the time for solving the problem is exponential. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
24.
针对精确作战中的目标价值排序问题,从战场实际出发建立了目标价值体系,并在此基础上应用AHP原理提出了目标价值排序的递阶层次结构模型.通过成对比较实现作战目标价值的精确排序,为指挥员基于目标价值的决策提供理论依据.  相似文献   
25.
堆积固体自燃火灾是常见多发火灾,由于其规模庞大、着火延迟期长等特点,难以进行全尺寸的模拟实验,为火灾预防和调查工作带来了一定的难度。基于F—K(Frank—Kamenetskii)理论,将小规模实验结果外推,从而预测或判断一定尺寸的堆积固体在一定的环境温度下自燃起火的危险性。  相似文献   
26.
In this paper, we present an optimization model for coordinating inventory and transportation decisions at an outbound distribution warehouse that serves a group of customers located in a given market area. For the practical problems which motivated this paper, the warehouse is operated by a third party logistics provider. However, the models developed here may be applicable in a more general context where outbound distribution is managed by another supply chain member, e.g., a manufacturer. We consider the case where the aggregate demand of the market area is constant and known per period (e.g., per day). Under an immediate delivery policy, an outbound shipment is released each time a demand is realized (e.g., on a daily basis). On the other hand, if these shipments are consolidated over time, then larger (hence more economical) outbound freight quantities can be dispatched. In this case, the physical inventory requirements at the third party warehouse (TPW) are determined by the consolidated freight quantities. Thus, stock replenishment and outbound shipment release policies should be coordinated. By optimizing inventory and freight consolidation decisions simultaneously, we compute the parameters of an integrated inventory/outbound transportation policy. These parameters determine: (i) how often to dispatch a truck so that transportation scale economies are realized and timely delivery requirements are met, and (ii) how often, and in what quantities, the stock should be replenished at the TPW. We prove that the optimal shipment release timing policy is nonstationary, and we present algorithms for computing the policy parameters for both the uncapacitated and finite cargo capacity problems. The model presented in this study is considerably different from the existing inventory/transportation models in the literature. The classical inventory literature assumes that demands should be satisfied as they arrive so that outbound shipment costs are sunk costs, or else these costs are covered by the customer. Hence, the classical literature does not model outbound transportation costs. However, if a freight consolidation policy is in place then the outbound transportation costs can no longer be ignored in optimization. Relying on this observation, this paper models outbound transportation costs, freight consolidation decisions, and cargo capacity constraints explicitly. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 531–556, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10030  相似文献   
27.
In many practical manufacturing environments, jobs to be processed can be divided into different families such that a setup is required whenever there is a switch from processing a job of one family to another job of a different family. The time for setup could be sequence independent or sequence dependent. We consider two particular scheduling problems relevant to such situations. In both problems, we are given a set of jobs to be processed on a set of identical parallel machines. The objective of the first problem is to minimize total weighted completion time of jobs, and that of the second problem is to minimize weighted number of tardy jobs. We propose column generation based branch and bound exact solution algorithms for the problems. Computational experiments show that the algorithms are capable of solving both problems of medium size to optimality within reasonable computational time. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 823–840, 2003.  相似文献   
28.
In this paper, we derive new families of facet‐defining inequalities for the finite group problem and extreme inequalities for the infinite group problem using approximate lifting. The new valid inequalities for the finite group problem include two‐ and three‐slope facet‐defining inequalities as well as the first family of four‐slope facet‐defining inequalities. The new valid inequalities for the infinite group problem include families of two‐ and three‐slope extreme inequalities. These new inequalities not only illustrate the diversity of strong inequalities for the finite and infinite group problems, but also provide a large variety of new cutting planes for solving integer and mixed‐integer programming problems. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
29.
Today, many products are designed and manufactured to function for a long period of time before they fail. Determining product reliability is a great challenge to manufacturers of highly reliable products with only a relatively short period of time available for internal life testing. In particular, it may be difficult to determine optimal burn‐in parameters and characterize the residual life distribution. A promising alternative is to use data on a quality characteristic (QC) whose degradation over time can be related to product failure. Typically, product failure corresponds to the first passage time of the degradation path beyond a critical value. If degradation paths can be modeled properly, one can predict failure time and determine the life distribution without actually observing failures. In this paper, we first use a Wiener process to describe the continuous degradation path of the quality characteristic of the product. A Wiener process allows nonconstant variance and nonzero correlation among data collected at different time points. We propose a decision rule for classifying a unit as normal or weak, and give an economic model for determining the optimal termination time and other parameters of a burn‐in test. Next, we propose a method for assessing the product's lifetime distribution of the passed units. The proposed methodologies are all based only on the product's initial observed degradation data. Finally, an example of an electronic product, namely contact image scanner (CIS), is used to illustrate the proposed procedure. © 2002 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
30.
In this article, the Building Evacuation Problem with Shared Information (BEPSI) is formulated as a mixed integer linear program, where the objective is to determine the set of routes along which to send evacuees (supply) from multiple locations throughout a building (sources) to the exits (sinks) such that the total time until all evacuees reach the exits is minimized. The formulation explicitly incorporates the constraints of shared information in providing online instructions to evacuees, ensuring that evacuees departing from an intermediate or source location at a mutual point in time receive common instructions. Arc travel time and capacity, as well as supply at the nodes, are permitted to vary with time and capacity is assumed to be recaptured over time. The BEPSI is shown to be NP‐hard. An exact technique based on Benders decomposition is proposed for its solution. Computational results from numerical experiments on a real‐world network representing a four‐story building are given. Results of experiments employing Benders cuts generated in solving a given problem instance as initial cuts in addressing an updated problem instance are also provided. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号