首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   3篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2012年   2篇
  2011年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
本文概要介绍了潜艇和载人航天器舱内二氧化碳分离去除的4种主要方法:碱吸收法、吸附法、电化学法和膜法,并就该技术领域的历史与现状、各种方法的优缺点和具体的应用情况,以及今后国内外的发展趋势进行了分析与评述。  相似文献   
2.
利用随机Petri网方法建立了基于FC-AE-1553协议的光纤通道交换式网络的网络模型,验证了模型的可行性。通过仿真计算得到总线性能指标,仿真结果表明光纤通道在带宽、数据延迟、传输媒体和距离、错误检测、优先级等方面具有适合于航空电子系统的良好特性。  相似文献   
3.
夹杂物对有机涂层下碳钢腐蚀初期过程的影响   总被引:1,自引:0,他引:1  
选择两种具有典型夹杂物的碳钢,通过浸泡试验,研究有机涂层下碳钢的腐蚀初期过程,并和裸钢的腐蚀过程进行对比.结果表明:涂层试样和裸钢试样腐蚀发展的初期过程都是点蚀;涂层试样点蚀诱发孕育期大大长于裸钢试样;点蚀的主要诱发源是钢中的硫化物和硅酸盐;硫化物夹杂物诱发点蚀及点蚀的扩展主要沿夹杂物与基体间的相界进行.  相似文献   
4.
This work uses the molecular dynamics approach to study the effects of functionalization of carbon nanotubes (CNTs) on the mechanical properties of Cu64Zr36 metallic glass (MG). Three types of functional groups, carboxylic, vinyl and ester were used. The effect of CNT volume fraction (Vf) and the number of functional groups attached to CNT, on the mechanical properties and thermal conductivity of CNT-MG composites was analysed using Biovia Materials Studio. At lower values of Vf (from 0 to 5%), the per-centage increase in Young's modulus was approximately 66%. As the value of Vf was increased further (from 5 to 12%), the rate of increase in Young's modulus was reduced to 16%. The thermal conductivity was found to increase from 1.52 W/mK at Vf=0%to 5.88 W/mK at Vf=12%, thus giving an increase of approximately 286%. Functionalization of SWCNT reduced the thermal conductivity of the SWCNT-MG composites.  相似文献   
5.
The mechanical, thermal and ablation properties of carbon phenolic (C-Ph) composites (Type-I) rein-forced with different weight percentages of organo-modified montmorillonite (o-MMT) nanoclay have been studied experimentally. Ball milling was used to disperse different weight (wt) percentages (0, 1,2,4,6 wt.%) of nanoclay into phenolic resin. Viscosity changes to resin due to nanoclay was studied. On the other hand, nanoclay added phenolic matrix composites (Type-II) were prepared to study the dispersion of nanoclay in phenolic matrix by small angle X-ray scattering and thermal stability changes to the matrix by thermogravimetric analyser (TGA). This data was used to understand the mechanical, thermal and ablation properties of Type-I composites. Inter laminar shear strength (ILSS), flexural strength and flexural modulus of Type I composites increased by about 29%, 12%and 7%respectively at 2 wt.% addition of nanoclay beyond which these properties decreased. This was attributed to reduced fiber volume fraction (%Vf) of Type-I composites due to nanoclay addition at such high loadings. Mass ablation rate of Type-I composites was evaluated using oxy acetylene torch test at low heat flux (125 W/cm2) and high heat flux levels (500 W/cm2). Mass ablation rates have increased at both flux levels marginally up to 2 wt.% addition of nanoclay beyond which it has increased significantly. This is in contrast to increased thermal stability observed for Type-I and Type-Ⅱ composites up to 2 wt.%addition of nanoclay. Increased ablation rates due to nanoclay addition was attributed to higher insulation effi-ciency of nanolcay, which accumulates more heat energy in limited area behind the ablation front and self-propagating ablation mechanisms triggered by thermal decomposition of organic part of nanoclay.  相似文献   
6.
This article explores the drilling behavior of polymer nanocomposites reinforced by Graphene oxide/Carbon fiber using a hybrid method of Grey theory and Principal component analysis (GR-PCA). An online digital dynamometer was employed for the evaluation of Thrust Force and Torque. The image processing technique computes the delamination. Response surface methodology (RSM) considers the parameters, namely, drilling speed (S), feed rate (F), Graphene Oxide wt.% (G) in designing the experimentation array. Principal component analysis (PCA) was used to tackle the response priority weight during the combination of multiple functions. Analysis of variance (ANOVA) scrutinized the influence of parameters and intended the regression models to predict the response. GR-PCA evaluated the optimal parametric setting and remarked that feed rate acts as the most predominant factor. The higher feed rate and wt.% of G is responsible for surface damages like fiber pull-out, fiber fracture and cracks. A significant improvement in drilling responses has been obtained and also validates through confirmatory test and microstructure investigations.  相似文献   
7.
《防务技术》2022,18(10):1822-1833
High-performance ballistic fibers, such as aramid fiber and ultra-high-molecular-weight polyethylene (UHMWPE), are commonly used in anti-ballistic structures due to their low density, high tensile strength and high specific modulus. However, their low modulus in the thickness direction and insufficient shear strength limits their application in certain ballistic structure. In contrast, carbon fiber reinforced epoxy resin matrix composites (CFRP) have the characteristics of high modulus in the thickness direction and high shear resistance. However, carbon fibers are rarely used and applied for protection purposes. A hybridization with aramid fiber reinforced epoxy resin matrix composites (AFRP) and CFRP has the potential to improve the stiffness and the ballistic property of the typical ballistic fiber composites. The hybrid effects on the flexural property and ballistic performance of the hybrid CFRP/AFRP laminates were investigated. Through conducting mechanical property tests and ballistic tests, two sets of reliable simulation parameters for AFRP and CFRP were established using LS-DYNA software, respectively. The experimental results suggested that by increasing the content of CFRP that the flexural properties of hybrid CFRP/AFRP laminates were enhanced. The ballistic tests’ results and the simulation illustrated that the specific energy absorption by the perforation method of CFRP achieved 77.7% of AFRP. When CFRP was on the striking face, the shear resistance of the laminates and the resistance force to the projectiles was promoted at the initial penetration stage. The proportion of fiber tensile failures in the AFRP layers was also enhanced with the addition of CFRP during the penetration process. These improvements resulted in the ballistic performance of hybrid CFRP/AFRP laminates was better than AFRP when the CFRP content was 20 wt% and 30 wt%.  相似文献   
8.
采用分层介质膜的等效模型 ,计算了均匀光纤光栅及线性啁啾光栅的反射谱、透射谱及反射相位跃变 ,结果与采用耦合模理论计算的结果相吻合 ,表明这是分析光纤光栅的光反射特性的一种有效的新方法 .  相似文献   
9.
由于具有更为显著的量子隧穿效应,碳纳米管场效应管具有较硅基MOS管不同的尺寸缩小特性,同时,由于工作机理的不同,类MOS碳纳米管场效应管(C-CNFETs:Conventional MOS-like Carbon Nanotube Field Effect Transistors)的尺寸缩小特性与隧穿碳纳米管场效应管(...  相似文献   
10.
《防务技术》2019,15(3):319-325
Nanothermites (metal oxide/metal) can offer tremendously exothermic self sustained reactions. CuO is one of the most effective oxidizers for naonothermite applications. This study reports on two prospectives for the manufacture of CuO nanoparticles. Colloidal CuO particles of 15 nm particle size were developed using hydrothermal synthesis technique. Multiwalled carbon nanotubes (MWCNTs) with surface are 700 m2/g was employed as a substrate for synthesis of CuO-coated MWCNTs using electroless plating. On the other hand, aluminium particles with combustion heat of 32000 J/g is of interest as high energy density material. The impact of stoichiometric nanothermite particles (CuO/Al & Cuo-coated MWCNTs/Al) on shock wave strength of Al/TNT nanocomposite was evaluated using ballistic mortar test. While CuO-coated MWCNTs decreased the shock wave strength by 15%; colloidal CuO enhanced the shock wave strength by 30%. The superior performance of colloidal CuO particles was correlated to their steric stabilization with employed organic solvent. This is the first time ever to report on fabrication, isolation, and integration of stablilized colloidal nanothermite particles into energetic matrix where intimate mixing between oxidizer and metal fuel could be achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号