首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
This article generalizes the models in Guo and Zipkin, who focus on exponential service times, to systems with phase‐type service times. Each arriving customer decides whether to stay or balk based on his expected waiting cost, conditional on the information provided. We show how to compute the throughput and customers' average utility in each case. We then obtain some analytical and numerical results to assess the effect of more or less information. We also show that service‐time variability degrades the system's performance. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

2.
An efficient algorithm for determining the optimal arrival schedule for customers in a stochastic service system is developed. All customers arrive exactly when scheduled, and service times are modeled as iid Erlang random variables. Costs are incurred at a fixed rate per unit of time each customer waits for service, and an additional cost is incurred for every unit of time the server operates beyond a scheduled closing time. The objective is to minimize total operating cost. This type of problem arises in many operational contexts including transportation, manufacturing, and appointment‐based services. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 549–559, 1999  相似文献   

3.
We consider the single‐server constant retrial queue with a Poisson arrival process and exponential service and retrial times. This system has not waiting space, so the customers that find the server busy are forced to abandon the system, but they can leave their contact details. Hence, after a service completion, the server seeks for a customer among those that have unsuccessfully applied for service but left their contact details, at a constant retrial rate. We assume that the arriving customers that find the server busy decide whether to leave their contact details or to balk based on a natural reward‐cost structure, which incorporates their desire for service as well as their unwillingness to wait. We examine the customers' behavior, and we identify the Nash equilibrium joining strategies. We also study the corresponding social and profit maximization problems. We consider separately the observable case where the customers get informed about the number of customers waiting for service and the unobservable case where they do not receive this information. Several extensions of the model are also discussed. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

4.
Many cooperative games, especially ones stemming from resource pooling in queueing or inventory systems, are based on situations in which each player is associated with a single attribute (a real number representing, say, a demand) and in which the cost to optimally serve any sum of attributes is described by an elastic function (which means that the per‐demand cost is non‐increasing in the total demand served). For this class of situations, we introduce and analyze several cost allocation rules: the proportional rule, the serial cost sharing rule, the benefit‐proportional rule, and various Shapley‐esque rules. We study their appeal with regard to fairness criteria such as coalitional rationality, benefit ordering, and relaxations thereof. After showing the impossibility of combining coalitional rationality and benefit ordering, we show for each of the cost allocation rules which fairness criteria it satisfies. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 271–286, 2017  相似文献   

5.
This paper considers optimal staffing in service centers. We construct models for profit and cost centers using dynamic rate queues. To allow for practical optimal controls, we approximate the queueing process using a Gaussian random variable with equal mean and variance. We then appeal to the Pontryagin's maximum principle to derive a closed form square root staffing (SRS) rule for optimal staffing. Unlike most traditional SRS formulas, the main parameter in our formula is not the probability of delay but rather a cost‐to‐benefit ratio that depends on the shadow price. We show that the delay experienced by customers can be interpreted in terms of this ratio. Throughout the article, we provide theoretical support of our analysis and conduct extensive numerical experiments to reinforce our findings. To this end, various scenarios are considered to evaluate the change in the staffing levels as the cost‐to‐benefit ratio changes. We also assess the change in the service grade and the effects of a service‐level agreement constraint. Our analysis indicates that the variation in the ratio of customer abandonment over service rate particularly influences staffing levels and can lead to drastically different policies between profit and cost service centers. Our main contribution is the introduction of new analysis and managerial insights into the nonstationary optimal staffing of service centers, especially when the objective is to maximize profitability. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 615–630, 2017  相似文献   

6.
A production system which generates income is subject to random failure. Upon failure, the system is replaced by a new identical one and the replacement cycles are repeated indefinitely. In our breakdown model, shocks occur to the system in a Poisson stream. Each shock causes a random amount of damage, and these damages accumulate additively. The failure time depends on the accumulated damage in the system. The income from the system and the cost associated with a planned replacement depend on the accumulated damage in the system. An additional cost is incurred at each failure in service. We allow a controller to replace the system at any stopping time T before failure time. We will consider the problem of specifying a replacement rule that is optimal under the following criteria: maximum total long-run average net income per unit time, and maximum total long-run expected discounted net income. Our primary goal is to introduce conditions under which an optimal policy is a control limit policy and to investigate how the optimal policy can be obtained. Examples will be presented to illustrate computational procedures.  相似文献   

7.
We describe a periodic review inventory system where emergency orders, which have a shorter supply lead time but are subject to higher ordering cost compared to regular orders, can be placed on a continuous basis. We consider the periodic review system in which the order cycles are relatively long so that they are possibly larger than the supply lead times. Study of such systems is important since they are often found in practice. We assume that the difference between the regular and emergency supply lead times is less than the order-cycle length. We develop a dynamic programming model and derive a stopping rule to end the computation and obtain optimal operation parameters. Computational results are included that support the contention that easily implemented policies can be computed with reasonable effort. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 187–204, 1998  相似文献   

8.
A system is subject to a sequence of randomly occurring shocks. Each shock causes a random amount of damage which accumulates additively. Any of the shocks might cause the system to fail. The shock process is in some sense related to an environmental process in order to describe randomly varying external factors of an economical and/or technical nature as well as internal factors of a statistical nature. A discrete time formulation of the problem is given. Sufficient conditions are found for optimality of a generalized control-limit rule with respect to the total cost criterion: Whenever the accumulated damage s is not less than a specified critical number t(i), depending on the environmental state i, replace the system by a new one; otherwise do not replace it. Moreover, bounds are given for these critical numbers.  相似文献   

9.
We consider a reader—writer system consisting of a single server and a fixed number of jobs (or customers) belonging to two classes. Class one jobs are called readers and any number of them can be processed simultaneously. Class two jobs are called writers and they have to be processed one at a time. When a writer is being processed no other writer or readers can be processed. A fixed number of readers and writers are ready for processing at time 0. Their processing times are independent random variables. Each reader and writer has a fixed waiting cost rate. We find optimal scheduling rules that minimize the expected total waiting cost (expected total weighted flowtime). We consider both nonpreemptive and preemptive scheduling. The optimal nonpreemptive schedule is derived by a variation of the usual interchange argument, while the optimal schedule in the preemptive case is given by a Gittins index policy. These index policies continue to be optimal for systems in which new writers enter the system in a Poisson fashion. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 483–495, 1998  相似文献   

10.
The strategic trade-offs between acquiring new capacity and subcontracting (or leasing) capacity are explored for service environments characterized by rapid technological improvement or highly seasonal demand. Reflecting the focus on service-sector organizations, it is assumed that demand cannot be met from inventory. Furthermore, the critical impact that subcontracting has on a firm's competitive pricing policy is examined. The analysis presented is of particular relevance for firms in price-competitive industries such as telecommunications, information services, or health care, because subcontracting capacity represents an alternative to acquiring costly new capacity which may soon become obsolete or unnecessary. It is shown that the optimal price charged is based on the higher of the two operating costs incurred (internal unit cost or unit cost of subcontracting). It is also shown that as a consequence of subcontracting to maximize profit, the optimal price charged is never reduced and may increase. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
An n-component parallel system is subjected to a known load program. As time passes, components fail in a random manner, which depends on their individual load histories. At any time, the surviving components share the total load according to some rule. The system's life distribution is studied under the linear breakdown rule and it is shown that if the load program is increasing, the system lifetime is IFR. Using the notion of Schur convexity, a stochastic comparison of different systems is obtained. It is also shown that the system failure time is asymptotically normally distributed as the number of components grows large. All these results hold under various load-sharing rules; in fact, we show that the system lifetime distribution is invariant under different load-sharing rules.  相似文献   

12.
A cost-based composite scheduling rule is developed and evaluated in comparison with three other well-researched scheduling rules—SPT, S/OPN, and SST. This cost rule permits the optimization of more than one performance measure at a time. The priority number that is used for scheduling operations through each machine group is based on four separate performance measures—(1) In-process Inventory, (2) Facilities Utilization, (3) Lateness, and (4) Mean Setup Time. The factorial experimental design involved three factor levels of loads, three factor levels of cost, and three factor levels of mean time. Analysis of variance was performed on each of the five output measures to study the effects of each of the three factors on each individual rule. Rank-order comparisons between rules were also made; and, finally, general conclusions with regard to the effectiveness and flexibility of the Cost Rule were drawn.  相似文献   

13.
This paper does not present a new result, rather it is meant to illustrate the choice of modelling procedures available to an analyst in a typical inventory control problem. The same “average cost per unit time” expression is developed by three quite different procedures. This variety of approaches, as well as the recounting of the author's chronological efforts to solve the problem, should be of interest to the reader. The specific inventory problem studied is one where the controller of an item is faced with random opportunities for replenishment at a reduced setup cost; the problem is an integral component of the broader problem of inventory control of a group of items whose replenishments are coordinated to reduce the costs of production, procurement, and/or transportation.  相似文献   

14.
In an endeavor to broaden the application of scheduling models to decisions involving the use of a manager's time we use simulation to investigate the performance of a number of simple algorithms (including eight priority rules and a construction heuristic) in a dynamic setting with tasks arriving (randomly) and scheduling decisions being made, over time. We compare these simple methods relative to a bound that uses an adjacent pairwise interchange algorithm. We model uncertainty in task durations, and costs being incurred for early and tardy task completion (representative of JIT settings). In addition to evaluating the efficacy of the scheduling rules and various preemption strategies (using ANOVA), we highlight the managerial implications of the effects of eight environmental parameters. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Using a system-point (SP) method of level crossings, we derive the stationary distribution of the inventory level (stock on hand) in a continuous-review inventory system with compound Poisson demand, Erlang as well as hyperexponentially distributed lead times, and lost sales. This distribution is then used to formulate long-run average cost functions with/without a service level constraint. Some numerical results are also presented, and compared with the Hadley and Whitin heuristic. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 259–278, 1998  相似文献   

16.
A search model is formulated in which positive information may be obtained, through the detection of trails, as to the target's earlier whereabouts. The corresponding Bayesian update formulas for target location probabilities are derived. The model does not appear to be amenable to rigorous optimization. A moving-horizon rule, and a heuristic simplification thereof, are, however, derived. In two numerical examples it is demonstrated that actively designing for detecting trail information, through use of these moving-horizon rules, has substantial potential advantage over using, for example, myopic rules even if the positive information is adaptively incorporated into location probabilities before applying the latter rules in each time period.  相似文献   

17.
针对目前军事仿真系统开发中存在的军事仿真规则提取不完备的问题,在充分发挥ECA规则提取方法优势的基础上,提出了面向实体的军事仿真规则提取方法。该方法以实体状态变迁为中心,运用系统论方法,重点分析实体的环境、功能、行为、组元和结构状态,并将分析结果引入ECA规则。通过将该方法应用于装备抢修组实施抢修的规则提取中,验证了其对于提高规则的完备性与可信性具有较好的效果。  相似文献   

18.
This paper uses the holding time model (HTM) method to derive an approximate analytic formula for the calculation of the mean throughput of a K-station production line with no buffers between any two successive stations. Service times follow the two-stage Coxian (C2) distribution at all stations. The paper provides a formula that relates the third moment of the service completion (or virtual service) time with the respective parameters of the service time, the repair time and the time to breakdown (the latter is assumed to follow the exponential distribution). In this way, it concludes that under certain conditions the two-stage Coxian distribution can be used to approximate any general distribution matching the first three moments of the service completion time distribution. The mean holding times (consisting of the service and blocking periods) of all stations of the line are obtained in an analytical form. Numerical results are provided for the mean throughput of lines with up to 20 stations. These results are shown to have a good accuracy compared against results obtained from the Markovian state method (for short lines) and results from simulation (for longer lines). © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 669–685, 1998  相似文献   

19.
Within a reasonable life‐testing time, how to improve the reliability of highly reliable products is one of the great challenges to today's manufacturers. By using a resolution III experiment together with degradation test, Tseng, Hamada, and Chiao (1995) presented an interesting case study of improving the reliability of fluorescent lamps. However, in conducting such an experiment, they did not address the problem of how to choose the optimal settings of variables, such as sample size, inspection frequency, and termination time for each run, which are influential to the correct identification of significant factors and the experimental cost. Assuming that the product's degradation paths satisfy Wiener processes, this paper proposes a systematic approach to the aforementioned problem. First, an intuitively appealing identification rule is proposed. Next, under the constraints of a minimum probability of correct decision and a maximum probability of incorrect decision of the proposed identification rule, the optimum test plan (including the determinations of inspection frequency, sample size, and termination time for each run) can be obtained by minimizing the total experimental cost. An example is provided to illustrate the proposed method. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 514–526, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10024  相似文献   

20.
We study a parallel machine scheduling problem, where a job j can only be processed on a specific subset of machines Mj, and the Mj subsets of the n jobs are nested. We develop a two‐phase heuristic for minimizing the total weighted tardiness subject to the machine eligibility constraints. In the first phase, we compute the factors and statistics that characterize a problem instance. In the second phase, we propose a new composite dispatching rule, the Apparent Tardiness Cost with Flexibility considerations (ATCF) rule, which is governed by several scaling parameters of which the values are determined by the factors obtained in the first phase. The ATCF rule is a generalization of the well‐known ATC rule which is very widely used in practice. We further discuss how to improve the dispatching rule using some simple but powerful properties without requiring additional computation time, and the improvement is quite satisfactory. We apply the Sequential Uniform Design Method to design our experiments and conduct an extensive computational study, and we perform tests on the performance of the ATCF rule using a real data set from a large hospital in China. We further compare its performance with that of the classical ATC rule. We also compare the schedules improved by the ATCF rule with what we believe are Near Optimal schedules generated by a general search procedure. The computational results show that especially with a low due date tightness, the ATCF rule performs significantly better than the well‐known ATC rule generating much improved schedules that are close to the Near Optimal schedules. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 249–267, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号