首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We consider design of control charts in the presence of machine stoppages that are exogenously imposed (as under jidoka practices). Each stoppage creates an opportunity for inspection/repair at reduced cost. We first model a single machine facing opportunities arriving according to a Poisson process, develop the expressions for its operating characteristics and construct the optimization problem for economic design of a control chart. We, then, consider the multiple machine setting where individual machine stoppages may create inspection/repair opportunities for other machines. We develop exact expressions for the cases when all machines are either opportunity‐takers or not. On the basis of an approximation for the all‐taker case, we then propose an approximate model for the mixed case. In a numerical study, we examine the opportunity taking behavior of machines in both single and multiple machine settings and the impact of such practices on the design of an X – Q C chart. Our findings indicate that incorporating inspection/repair opportunities into QC chart design may provide considerable cost savings. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

2.
For a three‐sector Feder‐Ram framework, we present time‐series, cross‐sectional estimates for two cohorts, consisting of Asian and Latin American countries. The estimates indicate that private investment, and defense and non‐defense public spending are growth promoting for alternative error components representations. For the best error components representation, greater growth enhancement is associated with the two forms of public spending in Asia than in Latin America, while the opposite comparison characterizes private investment. Although defense is growth promoting, an opportunity cost exists insofar as non‐defense spending, financed by defense spending, appears to give a small net boost to growth in Latin America.  相似文献   

3.
The Shia militia has emerged as one of the most powerful and important actors in the Middle East security environment. Despite this trend, they remain poorly understood by scholars and policymakers alike. This article seeks to expand our understanding of the militia as a type of non-state armed group through an examination of Shia militia movements in Iraq between 2003 and 2009. More than simply warlords, paramilitaries, or foreign proxies, Shia militias in Iraq enjoyed substantial popular legitimacy, pursued a broad social and political agenda, and participated actively in the formal institutions of the state. Understanding the triangular relationship between the militia, the state, and the population is essential in explaining the rise and fall of the Shia militias during the US occupation as well as in developing strategies to deal with their most recent resurgence  相似文献   

4.
The idea of deploying noncollocated sources and receivers in multistatic sonar networks (MSNs) has emerged as a promising area of opportunity in sonar systems. This article is one of the first to address point coverage problems in MSNs, where a number of points of interest have to be monitored in order to protect them from hostile underwater assets. We consider discrete “definite range” sensors as well as various diffuse sensor models. We make several new contributions. By showing that the convex hull spanned by the targets is guaranteed to contain optimal sensor positions, we are able to limit the solution space. Under a definite range sensor model, we are able to exclude even more suboptimal solutions. We then formulate a nonlinear program and an integer nonlinear program to express the sensor placement problem. To address the nonconvex single‐source placement problem, we develop the Divide Best Sector (DiBS) algorithm, which quickly provides an optimal source position assuming fixed receivers. Starting with a basic implementation of DiBS, we show how incorporating advanced sector splitting methods and termination conditions further improve the algorithm. We also discuss two ways to use DiBS to find multiple source positions by placing sensors iteratively or simultaneously. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 287–304, 2017  相似文献   

5.
In this article, we introduce staffing strategies for the Erlang‐A queuing system in call center operations with uncertain arrival, service, and abandonment rates. In doing so, we model the system rates using gamma distributions that create randomness in operating characteristics used in the optimization formulation. We divide the day into discrete time intervals where a simulation based stochastic programming method is used to determine staffing levels. More specifically, we develop a model to select the optimal number of agents required for a given time interval by minimizing an expected cost function, which consists of agent and abandonment (opportunity) costs, while considering the service quality requirements such as the delay probability. The objective function as well as the constraints in our formulation are random variables. The novelty of our approach is to introduce a solution method for the staffing of an operation where all three system rates (arrival, service, and abandonment) are random variables. We illustrate the use of the proposed model using both real and simulated call center data. In addition, we provide solution comparisons across different formulations, consider a dynamic extension, and discuss sensitivity implications of changing constraint upper bounds as well as prior hyper‐parameters. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 460–478, 2016  相似文献   

6.
TANZANIA     
Protracted state collapse in Somalia has led to a multiplication and diversification of armed groups. We can speak of at least five types of armed group: faction, warlord, business, court, and Islamic militias. These groups differ in important ways, yet often are simply classified as ‘militia’ or ‘warlord’. This essay seeks to add a measure of analytical rigour to the classification of armed groups and provides a comparison using a framework of purpose, motivations, logistics, and command, control and communication. It concludes with some observations about the importance of making these distinctions when formulating policy for this region.  相似文献   

7.
We present a stochastic optimization model for planning capacity expansion under capacity deterioration and demand uncertainty. The paper focuses on the electric sector, although the methodology can be used in other applications. The goals of the model are deciding which energy types must be installed, and when. Another goal is providing an initial generation plan for short periods of the planning horizon that might be adequately modified in real time assuming penalties in the operation cost. Uncertainty is modeled under the assumption that the demand is a random vector. The cost of the risk associated with decisions that may need some tuning in the future is included in the objective function. The proposed scheme to solve the nonlinear stochastic optimization model is Generalized Benders' decomposition. We also exploit the Benders' subproblem structure to solve it efficiently. Computational results for moderate‐size problems are presented along with comparison to a general‐purpose nonlinear optimization package. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:662–683, 2001  相似文献   

8.
Abstract

A tremendous amount of important work has been done recently on operationalising the protection of civilians as a military task. The bulk of the discussion has focused on how militaries should respond to direct attacks on civilians. This is an important issue, but thinking about civilian protection should also include a serious examination of the ways in which the approach of military organisations to the problem of ‘spoiler’ groups can affect the level and dynamics of attacks on civilians – importantly, where armed groups are interested in violent control of civilian populations, attempts to ‘dislodge’ them from areas of control may substantially increase the level of violence against civilians (beyond the dangers to be expected from being near areas where active fighting is taking place). In 2009, the United Nations mission in the Democratic Republic of Congo (MONUC) supported the Congolese military in operations to dismantle the Hutu-dominated FDLR (Forces Démocratiques de Libération du Rwanda, Democratic Forces for the Liberation of Rwanda) militia group, at massive human cost. Critics have primarily focused on MONUC's failure to protect civilians from direct attack, consonant with the general discourse on tactics for civilian protection. These criticisms are valid, but in this paper I argue that two crucial additional considerations should be kept in mind: the way that military operations can affect violence against civilians, and the way that moralising the approach to armed groups, even those which have committed serious abuses, can limit military and political options – potentially in ways that increase civilian risk in the name of protecting them.  相似文献   

9.
In this paper we study the impact of cancellations of customer orders on an inventory system. We develop a periodic review (s, S) inventory model with Poisson demands, deterministic demand leadtimes and supply leadtimes. When no set up cost is present for replenishment, the behavior of the system cost can be studied analytically. For the case with a fixed set up cost, we derive the operating characteristics of the model via an embedded Markov chain analysis. Based on this, we formulate the total cost function and suggest a two‐phase approach to optimization. Our model can be used to compute cancellation fees and to evaluate the impacts of various conditions of cancellation. We find that cancellations, as major sources of inventory information distortion, increase total system costs, and the magnitude of the cost impact depends on the probability of cancellation and the expected cancellation time. Other relevant lessons and insights are also discussed. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 213–231, 1999  相似文献   

10.
Acceptance sampling is often used to monitor the quality of raw materials and components when product testing is destructive, time-consuming, or expensive. In this paper we consider the effect of a buyer-imposed acceptance sampling policy on the optimal batch size and optimal quality level delivered by an expected cost minimizing supplier. We define quality as the supplier's process capability, i.e., the probability that a unit conforms to all product specifications, and we assume that unit cost is an increasing function of the quality level. We also assume that the supplier faces a known and constant “pass-through” cost, i.e., a fixed cost per defective unit passed on to the buyer. We show that the acceptance sampling plan has a significant impact on the supplier's optimal quality level, and we derive the conditions under which zero defects (100% conformance) is the policy that minimizes the supplier's expected annual cost. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 515–530, 1997  相似文献   

11.
In this paper, we present a continuous time optimal control model for studying a dynamic pricing and inventory control problem for a make‐to‐stock manufacturing system. We consider a multiproduct capacitated, dynamic setting. We introduce a demand‐based model where the demand is a linear function of the price, the inventory cost is linear, the production cost is an increasing strictly convex function of the production rate, and all coefficients are time‐dependent. A key part of the model is that no backorders are allowed. We introduce and study an algorithm that computes the optimal production and pricing policy as a function of the time on a finite time horizon, and discuss some insights. Our results illustrate the role of capacity and the effects of the dynamic nature of demand in the model. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

12.
Inventory systems with returns are systems in which there are units returned in a repairable state, as well as demands for units in a serviceable state, where the return and demand processes are independent. We begin by examining the control of a single item at a single location in which the stationary return rate is less than the stationary demand rate. This necessitates an occasional procurement of units from an outside source. We present a cost model of this system, which we assume is managed under a continuous review procurement policy, and develop a solution method for finding the policy parameter values. The key to the analysis is the use of a normally distributed random variable to approximate the steady-state distribution of net inventory. Next, we study a single item, two echelon system in which a warehouse (the upper echelon) supports N(N ? 1) retailers (the lower echelon). In this case, customers return units in a repairable state as well as demand units in a serviceable state at the retailer level only. We assume the constant system return rate is less than the constant system demand rate so that a procurement is required at certain times from an outside supplier. We develop a cost model of this two echelon system assuming that each location follows a continuous review procurement policy. We also present an algorithm for finding the policy parameter values at each location that is based on the method used to solve the single location problem.  相似文献   

13.
A machine or production system is subject to random failure. Upon failure the system is replaced by a new one, and the process repeats. A cost is associated with each replacement, and an additional cost is incurred at each failure in service. Thus, there is an incentive for a controller to attempt to replace before failure occurs. The problem is to find an optimal control strategy that balances the cost of replacement with the cost of failure and results in a minimum total long-run average cost per unit time. We attack this problem under the cumulative damage model for system failure. In this failure model, shocks occur to the system in accordance with a Poisson process. Each shock causes a random amount of damage or wear and these damages accumulate additively. At any given shock, the system fails with a known probability that depends on the total damage accumulated to date. We assume that the cumulative damage is observable by the controller and that his decisions may be based on its current value. Supposing that the shock failure probability is an increasing function of the cumulative damage, we show that an optimal policy is to replace either upon failure or when this damage first exceeds a critical control level, and we give an equation which implicitly defines the optimal control level in terms of the cost and other system parameters. Also treated are some more general models that allow for income lost during repair time and other extensions.  相似文献   

14.
We consider the coordination problem between a vendor and a buyer operating under generalized replenishment costs that include fixed costs as well as stepwise freight costs. We study the stochastic demand, single‐period setting where the buyer must decide on the order quantity to satisfy random demand for a single item with a short product life cycle. The full order for the cycle is placed before the cycle begins and no additional orders are accepted by the vendor. Due to the nonrecurring nature of the problem, the vendor's replenishment quantity is determined by the buyer's order quantity. Consequently, by using an appropriate pricing schedule to influence the buyer's ordering behavior, there is an opportunity for the vendor to achieve substantial savings from transportation expenses, which are represented in the generalized replenishment cost function. For the problem of interest, we prove that the vendor's expected profit is not increasing in buyer's order quantity. Therefore, unlike the earlier work in the area, it is not necessarily profitable for the vendor to encourage larger order quantities. Using this nontraditional result, we demonstrate that the concept of economies of scale may or may not work by identifying the cases where the vendor can increase his/her profits either by increasing or decreasing the buyer's order quantity. We prove useful properties of the expected profit functions in the centralized and decentralized models of the problem, and we utilize these properties to develop alternative incentive schemes for win–win solutions. Our analysis allows us to quantify the value of coordination and, hence, to identify additional opportunities for the vendor to improve his/her profits by potentially turning a nonprofitable transaction into a profitable one through the use of an appropriate tariff schedule or a vendor‐managed delivery contract. We demonstrate that financial gain associated with these opportunities is truly tangible under a vendor‐managed delivery arrangement that potentially improves the centralized solution. Although we take the viewpoint of supply chain coordination and our goal is to provide insights about the effect of transportation considerations on the channel coordination objective and contractual agreements, the paper also contributes to the literature by analyzing and developing efficient approaches for solving the centralized problem with stepwise freight costs in the single‐period setting. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

15.
The parallel machine replacement problem consists of finding a minimum cost replacement policy for a finite population of economically interdependent machines. In this paper, we formulate a stochastic version of the problem and analyze the structure of optimal policies under general classes of replacement cost functions. We prove that for problems with arbitrary cost functions, there can be optimal policies where a machine is replaced only if all machines in worse states are replaced (Worse Cluster Replacement Rule). We then show that, for problems with replacement cost functions exhibiting nonincreasing marginal costs, there are optimal policies such that, in any stage, machines in the same state are either all kept or all replaced (No‐Splitting Rule). We also present an example that shows that economies of scale in replacement costs do not guarantee optimal policies that satisfy the No‐Splitting Rule. These results lead to the fundamental insight that replacement decisions are driven by marginal costs, and not by economies of scale as suggested in the literature. Finally, we describe how the optimal policy structure, i.e., the No‐Splitting and Worse Cluster Replacement Rules, can be used to reduce the computational effort required to obtain optimal replacement policies. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

16.
Considering a supply chain with a supplier subject to yield uncertainty selling to a retailer facing stochastic demand, we find that commonly studied classical coordination contracts fail to coordinate both the supplier's production and the retailer's procurement decisions and achieve efficient performance. First, we study the vendor managed inventory (VMI) partnership. We find that a consignment VMI partnership coupled with a production cost subsidy achieves perfect coordination and a win‐win outcome; it is simple to implement and arbitrarily allocates total channel profit. The production cost subsidy optimally chosen through Nash bargaining analysis depends on the bargaining power of the supplier and the retailer. Further, motivated by the practice that sometimes the retailer and the supplier can arrange a “late order,” we also analyze the behavior of an advance‐purchase discount (APD) contract. We find that an APD with a revenue sharing contract can efficiently coordinate the supply chain as well as achieve flexible profit allocation. Finally, we explore which coordination contract works better for the supplier vs. the retailer. It is interesting to observe that Nash bargaining solutions for the two coordination contracts are equivalent. We further provide recommendations on the applications of these contracts. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 305–319, 2016  相似文献   

17.
We study an assembly system with a single finished product managed using an echelon base‐stock or order‐up‐to policy. Some or all operations have capacity constraints. Excess demand is either backordered in every period or lost in every period. We show that the shortage penalty cost over any horizon is jointly convex with respect to the base‐stock levels and capacity levels. When the holding costs are also included in the objective function, we show that the cost function can be written as a sum of a convex function and a concave function. Throughout the article, we discuss algorithmic implications of our results for making optimal inventory and capacity decisions in such systems.© 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

18.
Postmodern contradictions in postcolonial Nigeria have led to the fetishisation of alternative local security measures often labelled as vigilante activities. The profiling of these groups as ethnic militia often undermines their essential bid to provide security while delimiting security needs to the physical. The fallouts of such profiling are frictions between federal security agents and ethnic-based security groups, often resulting in violence, as exemplified by the 7 May 2013 incident between the Nigerian federal security agents and the Ombatse. This study focuses on the emergence and activities of the Ombatse as an alternative security apparatus of the Eggon. It presents three years of field research which entailed the use of ethnography, key informant interviews and observation. The findings reveal that the Ombatse emerged to assert historical legitimacy for both the physical and spiritual securitisation of the Eggon through a return to the ancestral ways of social engineering. The study considers the security challenges in Nigeria, and also situates the Eggon historical context within political, religious, sociocultural and economic intersections of securitisation. It concludes that the Ombatse situates its legitimacy within the Eggon past and retains its relevance through the holistic focus of providing both physical and spiritual security.  相似文献   

19.
We study stochastic clearing systems with a discrete-time Markovian input process, and an output mechanism that intermittently and instantaneously clears the system partially or completely. The decision to clear the system depends on both quantities and delays of outstanding inputs. Clearing the system incurs a fixed cost, and outstanding inputs are charged a delay penalty, which is a general increasing function of the quantities and delays of individual inputs. By recording the quantities and delays of outstanding inputs in a sequence, we model the clearing system as a tree-structured Markov decision process over both a finite and infinite horizon. We show that the optimal clearing policies, under realistic conditions, are of the on-off type or the threshold type. Based on the characterization of the optimal policies, we develop efficient algorithms to compute parameters of the optimal policies for such complex clearing systems for the first time. We conduct a numerical analysis on the impact of the nonlinear delay penalty cost function, the comparison of the optimal policy and the classical hybrid policy (ie, quantity and age thresholds), and the impact of the state of the input process. Our experiments demonstrate that (a) the classical linear approximation of the cost function can lead to significant performance differences; (b) the classical hybrid policy may perform poorly (as compared to the optimal policies); and (c) the consideration of the state of the input process makes significant improvement in system performance.  相似文献   

20.
Many cooperative games, especially ones stemming from resource pooling in queueing or inventory systems, are based on situations in which each player is associated with a single attribute (a real number representing, say, a demand) and in which the cost to optimally serve any sum of attributes is described by an elastic function (which means that the per‐demand cost is non‐increasing in the total demand served). For this class of situations, we introduce and analyze several cost allocation rules: the proportional rule, the serial cost sharing rule, the benefit‐proportional rule, and various Shapley‐esque rules. We study their appeal with regard to fairness criteria such as coalitional rationality, benefit ordering, and relaxations thereof. After showing the impossibility of combining coalitional rationality and benefit ordering, we show for each of the cost allocation rules which fairness criteria it satisfies. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 271–286, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号