首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article considers the preventive flow interception problem (FIP) on a network. Given a directed network with known origin‐destination path flows, each generating a certain amount of risk, the preventive FIP consists of optimally locating m facilities on the network in order to maximize the total risk reduction. A greedy search heuristic as well as several variants of an ascent search heuristic and of a tabu search heuristic are presented for the FIP. Computational results indicate that the best versions of the latter heuristics consistently produce optimal or near optimal solutions on test problems. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 287–303, 2000  相似文献   

2.
This paper presents an algorithm for solving the integer programming problem possessing a separable nonlinear objective function subject to linear constraints. The method is based on a generalization of the Balas implicit enumeration scheme. Computational experience is given for a set of seventeen linear and seventeen nonlinear test problems. The results indicate that the algorithm can solve the nonlinear integer programming problem in roughly the equivalent time required to solve the linear integer programming problem of similar size with existing algorithms. Although the algorithm is specifically designed to solve the nonlinear problem, the results indicate that the algorithm compares favorably with the Branch and Bound algorithm in the solution of linear integer programming problems.  相似文献   

3.
A branch and bound algorithm is developed for a class of allocation problems in which some constraint coefficients depend on the values of certain of the decision variables. Were it not for these dependencies, the problems could be solved by linear programming. The algorithm is developed in terms of a strategic deployment problem in which it is desired to find a least-cost transportation fleet, subject to constraints on men/materiel requirements in the event of certain hypothesized contingencies. Among the transportation vehicles available for selection are aircraft which exhibit the characteristic that the amount of goods deliverable by an aircraft on a particular route in a given time period (called aircraft productivity and measured in kilotons/aircraft/month) depends on the ratio of type 1 to type 2 aircraft used on that particular route. A model is formulated in which these relationships are first approximated by piecewise linear functions. A branch and bound algorithm for solving the resultant nonlinear problem is then presented; the algorithm solves a sequence of linear programming problems. The algorithm is illustrated by a sample problem and comments concerning its practicality are made.  相似文献   

4.
A descent algorithm simultaneously capable of solving linear programming, piecewise linear convex minimization, and the linear complementarity problem is developed. Conditions are given under which a solution can be found in a finite number of iterations using the geometry of the problem. A computer algorithm is developed and test problems are solved by both this method and Lemke's algorithm. Current results indicate a decrease in the number of cells visited but an increase in the total number of pivots needed to solve the problem.  相似文献   

5.
This paper investigates a new procedure for solving the general-variable pure integer linear programming problem. A simple transformation converts the problem to one of constructing nonnegative integer solutions to a system of linear diophantine equations. Rubin's sequential algorithm, an extension of the classic Euclidean algorithm, is used to find an integer solution to this system of equations. Two new theorems are proved on the properties of integer solutions to linear systems. This permits a modified Fourier-Motzkin elimination method to be used to construct a nonnegative integer solution. An experimental computer code was developed for the algorithm to solve some test problems selected from the literature. The computational results, though limited, are encouraging when compared with the Gomory all-integer algorithm.  相似文献   

6.
考虑了二阶线性系统的比例微分(PD)反馈特征结构配置问题以及其在最优控制问题中的应用。基于比例微分特征结构配置参数化方法,将二阶线性系统的最优控制问题转化为一个便于求解的有约束条件的极小值问题,并给出了相应的求解算法。三自由度质量弹簧阻尼系统算例及其仿真结果表明所提算法简单、有效。  相似文献   

7.
多目标广义指派问题的模糊匈牙利算法求解   总被引:5,自引:0,他引:5  
提出和讨论了两类多目标的广义指派决策问题,分别给出了它们的多目标整数线性规划数学模型,并结合模糊理论与解决传统指派问题的匈牙利方法提出了一种新的求解算法:模糊匈牙利法.最后给出了一个数值例子.  相似文献   

8.
We consider a class of network flow problems with pure quadratic costs and demonstrate that the conjugate gradient technique is highly effective for large-scale versions. It is shown that finding a saddle point for the Lagrangian of an m constraint, n variable network problem requires only the solution of an unconstrained quadratic programming problem with only m variables. It is demonstrated that the number of iterations for the conjugate gradient algorithm is substantially smaller than the number of variables or constraints in the (primal) network problem. Forty quadratic minimum-cost flow problems of various sizes up to 100 nodes are solved. Solution time for the largest problems (4,950 variables and 99 linear constraints) averaged 4 seconds on the CBC Cyber 70 Model 72 computer.  相似文献   

9.
Clustering problems are often difficult to solve due to nonlinear cost functions and complicating constraints. Set partitioning formulations can help overcome these challenges, but at the cost of a very large number of variables. Therefore, techniques such as delayed column generation must be used to solve these large integer programs. The underlying pricing problem can suffer from the same challenges (non‐linear cost, complicating constraints) as the original problem, however, making a mathematical programming approach intractable. Motivated by a real‐world problem in printed circuit board (PCB) manufacturing, we develop a search‐based algorithm (Rank‐Cluster‐and‐Prune) as an alternative, present computational results for the PCB problem to demonstrate the tractability of our approach, and identify a broader class of clustering problems for which this approach can be used. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

10.
由于无人机相对导航系统具有非线性强、噪声非高斯的特点,传统的基于卡尔曼滤波算法设计的相对导航滤波器存在估计失准甚至发散的问题。考虑到高阶容积卡尔曼滤波和最大熵滤波算法分别在解决非线性问题和非高斯问题时的优势,利用最大熵滤波的量测更新方法对高阶容积卡尔曼滤波的测量更新方程进行了改进,将传统的量测更新问题转换成了线性衰退的求解问题,避免了对测量噪声进行高斯假设,同时解决了系统非线性和量测噪声非高斯的问题。进行了相应的数学仿真,仿真结果表明:所提算法的估计精度超过了高阶容积卡尔曼滤波和最大熵滤波算法的,验证了算法的有效性。  相似文献   

11.
In this paper, we develop efficient deterministic algorithms for globally minimizing the sum and the product of several linear fractional functions over a polytope. We will show that an elaborate implementation of an outer approximation algorithm applied to the master problem generated by a parametric transformation of the objective function serves as an efficient method for calculating global minima of these nonconvex minimization problems if the number of linear fractional terms in the objective function is less than four or five. It will be shown that the Charnes–Cooper transformation plays an essential role in solving these problems. Also a simple bounding technique using linear multiplicative programming techniques has remarkable effects on structured problems. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 583–596, 1999  相似文献   

12.
A set of edges D called an isolation set, is said to isolate a set of nodes R from an undirected network if every chain between the nodes in R contains at least one edge from the set D. Associated with each edge of the network is a positive cost. The isolation problem is concerned with finding an isolation set such that the sum of its edge costs is a minimum. This paper formulates the problem of determining the minimal cost isolation as a 0–1 integer linear programming problem. An algorithm is presented which applies a branch and bound enumerative scheme to a decomposed linear program whose dual subproblems are minimal cost network flow problems. Computational results are given. The problem is also formulated as a special quadratic assignment problem and an algorithm is presented that finds a local optimal solution. This local solution is used for an initial bound.  相似文献   

13.
A dynamic version of the transportation (Hitchcock) problem occurs when there are demands at each of n sinks for T periods which can be fulfilled by shipments from m sources. A requirement in period t2 can be satisfied by a shipment in the same period (a linear shipping cost is incurred) or by a shipment in period t1 < t2 (in addition to the linear shipping cost a linear inventory cost is incurred for every period in which the commodity is stored). A well known method for solving this problem is to transform it into an equivalent single period transportation problem with mT sources and nT sinks. Our approach treats the model as a transshipment problem consisting of T, m source — n sink transportation problems linked together by inventory variables. Storage requirements are proportional to T2 for the single period equivalent transportation algorithm, proportional to T, for our algorithm without decomposition, and independent of T for our algorithm with decomposition. This storage saving feature enables much larger problems to be solved than were previously possible. Futhermore, we can easily incorporate upper bounds on inventories. This is not possible in the single period transportation equivalent.  相似文献   

14.
Competitive imperatives are causing manufacturing firms to consider multiple criteria when designing products. However, current methods to deal with multiple criteria in product design are ad hoc in nature. In this paper we present a systematic procedure to efficiently solve bicriteria product design optimization problems. We first present a modeling framework, the AND/OR tree, which permits a simplified representation of product design optimization problems. We then show how product design optimization problems on AND/OR trees can be framed as network design problems on a special graph—a directed series‐parallel graph. We develop an enumerative solution algorithm for the bicriteria problem that requires as a subroutine the solution of the parametric shortest path problem. Although this parametric problem is hard on general graphs, we show that it is polynomially solvable on the series‐parallel graph. As a result we develop an efficient solution algorithm for the product design optimization problem that does not require the use of complex and expensive linear/integer programming solvers. As a byproduct of the solution algorithm, sensitivity analysis for product design optimization is also efficiently performed under this framework. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 574–592, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10031  相似文献   

15.
In this paper we present a new formulation of the quadratic assignment problem. This is done by transforming the quadratic objective function into a linear objective function by introducing a number of new variables and constraints. The resulting problem is a 0-1 linear integer program with a highly specialized structure. This permits the use of the partitioning scheme of Benders where only the original variables need be considered. The algorithm described thus iterates between two problems. The master problem is a pure 0-1 integer program, and the subproblem is a transportation problem whose optimal solution is shown to be readily available from the master problem in closed form. Computational experience on problems available in the literature is provided.  相似文献   

16.
In many decision-making situations, each activity that can be undertaken may have associated with it both a fixed and a variable cost. Recently, we have encountered serveral practical problems in which the fixed cost of undertaking an activity depends upon which other activities are also undertaken. To our knowledge, no existing optimization model can accomodate such a fixed cost structure. To do so, we have therefore developed a new model called the interactive fixed charge linear programming problem (IFCLP). In this paper we present and motivate problem (IFCLP), study some of its characteristics, and present a finite branch and bound algorithm for solving it. We also discuss the main properties of this algorithm.  相似文献   

17.
本文讨论了变量有界的线性目标规划问题,给出了求解这类问题的一个对偶算法,此方法与变量有界线性规划问题的对偶算法相类似。文中证明了算法的有效性,并举例说明了计算过程。  相似文献   

18.
We consider a ship stowage planning problem where steel coils with known destination ports are to be loaded onto a ship. The coils are to be stowed on the ship in rows. Due to their heavy weight and cylindrical shape, coils can be stowed in at most two levels. Different from stowage problems in previous studies, in this problem there are no fixed positions on the ship for the coils due to their different sizes. At a destination port, if a coil to be unloaded is not at a top position, those blocking it need to be shuffled. In addition, the stability of ship has to be maintained after unloading at each destination port. The objective for the stowage planning problem is to minimize a combination of ship instability throughout the entire voyage, the shuffles needed for unloading at the destination ports, and the dispersion of coils to be unloaded at the same destination port. We formulate the problem as a novel mixed integer linear programming model. Several valid inequalities are derived to help reducing solution time. A tabu search (TS) algorithm is developed for the problem with the initial solution generated using a construction heuristic. To evaluate the proposed TS algorithm, numerical experiments are carried out on problem instances of three different scales by comparing it with a model‐based decomposition heuristic, the classic TS algorithm, the particle swarm optimization algorithm, and the manual method used in practice. The results show that for small problems, the proposed algorithm can generate optimal solutions. For medium and large practical problems, the proposed algorithm outperforms other methods. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 564–581, 2015  相似文献   

19.
In this note we analyze the fractional interval programming problem (FIP) and find, explicitly, all its optimal solutions. Though our results are essentially the same as those in Charnes and Cooper [4], the proofs and analysis we provide here are considerably simpler.  相似文献   

20.
We present a new algorithm for solving the problem of minimizing a nonseparable concave function over a polyhedron. The algorithm is of the branch-and-bound type. It finds a globally optimal extreme point solution for this problem in a finite number of steps. One of the major advantages of the algorithm is that the linear programming subproblems solved during the branch-and-bound search each have the same feasible region. We discuss this and other advantages and disadvantages of the algorithm. We also discuss some preliminary computational experience we have had with our computer code for implementing the algorithm. This computational experience involved solving several bilinear programming problems with the code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号