首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
热图像与瞄准镜分划图像实时叠加处理系统研究   总被引:1,自引:0,他引:1  
热像仪是夜战中用于观察和瞄准的重要装备,但目前装备的某些坦克和装甲车辆上的热像瞄准镜,本身并不具有瞄准分划,因而也就很难获取目标更多的信息,限制了对目标进行有效的瞄准射击:为了使其热像瞄准镜同样具有坦克微光瞄准镜所具有的功能,作者利用高速数字信号处理器ADsP21535开发评估板,研究设计了热图像和瞄准镜分划图像实时叠加处理系统,从而较好的解决上述问题.  相似文献   

2.
坦克射击模拟器炮长瞄准镜视景中,稳像工况下瞄准镜分划的过渡过程要与实装炮长瞄准镜中保持一致。该过渡过程实质就是火炮跟踪瞄准线的过渡过程。在分析炮控系统控制模型基础上,得到了二阶控制系统差分方程模型,即为射击模拟器炮长瞄准镜分划的过渡过程模型。  相似文献   

3.
一种瞄准线稳定跟踪系统的探讨   总被引:1,自引:0,他引:1  
本文提出了一种用于自行高炮或主战坦克的瞄准线稳定系统方案,讨论了稳定原理、数学模型及由此构成的跟踪系统。探讨了工程实践的三种方法。  相似文献   

4.
坦克作为地面战场的主要目标,分析其姿态至关重要。根据坦克姿态估计的需要,在可见光条件下采集了坦克车体纵轴与瞄准镜光轴不同夹角的图像作为训练集。利用主成分分析法选取了目标的主要特征向量,每个训练子集用3个特征向量表示,利用少量的特征向量建立目标的8个特征空间,降低了空间的维数。设计判别准则将待识别目标向量与重构向量之间的余弦值进行比较,即确定目标所在的空间位置,完成了目标姿态的识别。实验结果表明,利用建立目标多特征空间的方法识别目标空间位置是有效的。  相似文献   

5.
信息化条件下的战争要求坦克具有网络化打击的能力,能自主完成威胁评估和火力分配任务。这些任务以获取敌方目标的火力指向、攻防状态等信息为前提,与姿态信息相关联,因此,研究坦克姿态估计技术意义重大。对现有的一些单目姿态估计方法进行分类;讨论了部分方法估计坦克姿态的可行性;阐述了坦克姿态估计存在的问题和难点;对姿态估计技术提出了建议,供后续的研究参考。  相似文献   

6.
针对目前新型主战坦克火控系统无法直接利用指控系统获取的目标位置信息,为乘员搜索目标提供辅助指示、指控系统的信息优势没有充分发挥的问题,提出了一种坦克火控系统观瞄设备目标标记生成方法。该方法有效利用获取的目标位置、车载导航定位系统输出的本车位置,以及火控系统瞄准线角度等相关信息,将目标位置信息转换为在观瞄设备内的投影位置坐标,实现了动态目标的自动指示。  相似文献   

7.
在双轴平台动力调谐陀螺惯导系统中,动力调谐陀螺仪漂移与测量轴重力分量密切相关.根据动力调谐陀螺与重力相关漂移项的特点,提出了双轴平台陀螺漂移误差的补偿方法.通过安装在双轴平台上的加速度计测量载体姿态,并计算重力在陀螺两个测量轴的分量,建立了陀螺漂移模型,对方位漂移进行补偿.实验证明,该方法有效地提高了双轴平台方位漂移精度.  相似文献   

8.
汽车漂移,就是打横,会让人紧张得心都要跳出来。可是,你看过坦克漂移吗?数十吨重的铁碉堡,瞬间甩身转向,然后摧枯拉朽般地碾碎一切阻碍,绝对会带给您不一样的震撼。我们连队的班长杨国峰,就会来这一手。坐他开的坦克的人,都要万分当心,说不定啥时候坦克一打横,冷不防就撞你个鼻青脸肿!你小子不能温柔一点吗?有人曾如此抗议。杨国峰说:坦克是打仗的,急转  相似文献   

9.
随机漂移是制约陀螺精度的一个重要因素,提出了一种对陀螺随机漂移精确建模的方法.利用小波降噪技术消除信号中的高频噪声,再将降噪后的数据序列平稳化,对平稳化后的数据序列进行AR建模、卡尔曼滤波,得到陀螺随机漂移的估计量.用Allan方差等方法对仿真结果进行了检验,表明了该方法的有效性.该模型可用于补偿惯导系统中陀螺漂移产生的随机误差,以提高制导精度.  相似文献   

10.
为了实时获得滚转弹药的飞行姿态信息,提出了一种速率陀螺与磁强计组合的姿态测量方案。该方案采用磁强计获得大地磁场强度在弹体三轴的投影及其变化率,结合刚体转动运动模型,利用最优估计技术获得了滚转弹药姿态信息。与单点测量方法相比,最优估计方法综合了测量信息序列,不会出现反三角函数双值失控现象,并可获得更高精度。仿真表明:陀螺无漂移时,俯仰角、偏航角的解算精度小于0.1°;采用低成本陀螺含漂移时,姿态角的解算精度小于0.4°。  相似文献   

11.
在激光陀螺单轴旋转惯性导航系统中,单轴旋转可以自动补偿垂直于旋转轴上的惯性器件误差,却不能消除旋转轴方向上惯性器件的误差,因此单轴旋转惯性导航系统的导航精度主要由轴向陀螺漂移决定.提出了一种基于径向基函数神经网络的轴向陀螺漂移辨识方法,利用系统纬度误差和温度变化量作为训练集,针对系统热态、冷态两种情况对RBF神经网络进行训练,对轴向陀螺漂移的辨识精度达到0.0003°/h.试验结果表明:该方法能够有效地辨识轴向陀螺漂移,使系统达到较高的导航精度,满足实际应用的需要.  相似文献   

12.
直瞄射击方式是目前坦克采用的主要射击方式。直瞄射击方式受战场通视度及瞄准装置视距的影响,最大射击距离一般在5 km左右。间瞄射击方式不需要直接瞄准目标,不受战场通视度的影响,最大射击距离主要取决于火炮及弹药的性能,一般在10 km以上。未来坦克应具备直瞄射击与间瞄射击一体化能力。通过直瞄/间瞄射击火控技术的对比与分析,提出坦克直瞄/间瞄射击一体化火控方案。一体化火控具有新的技术特色,具有更强的综合作战能力,是未来坦克火控技术发展的一种趋势。  相似文献   

13.
针对捷联导引头测量信息的弹目惯性视线转率估计,提出了一种基于交互式多模型算法的样条滤波方法(IMM-SF)。基于体视线和惯性视线的映射关系解算惯性视线角,将其作为虚拟观测量进行滤波,设置多个过程噪声模型,每个模型分别采用样条滤波器进行滤波,IMM-SF滤波器的估值结果为各滤波器估值的加权综合。该方法不必对目标的未知机动建模,应用更加方便,并且可在交互式多模型算法的框架下自适应地调整滤波器的噪声。Monte-Carlo仿真结果表明该方法可有效估计视线转率,并可提高估值精度。  相似文献   

14.
坦克稳像火控系统射击精度分析   总被引:1,自引:0,他引:1  
从射击准备和射弹散布两个方面,对坦克稳像火控系统射击误差进行了较全面地分析,提出了射击误差的计算方法,并在此基础上对坦克使用稳像火控系统射击时的首发命中概率进行了计算  相似文献   

15.
作为一种集成了光学、电学和机械力学的复杂系统,激光陀螺可以精确地测量物体的角速率输出。为了满足惯性导航系统长时、高精度的测量要求,研究了激光陀螺内部不同类型的传感器与激光陀螺零偏误差之间的特性,在传统的基于温度的零偏误差补偿方法的基础上,引入了二频机抖激光陀螺内部温度传感器、光电二极管和粘在抖动机构上压电陶瓷的输出信息进行复合建模,利用非线性拟合能力强的支持向量机算法,针对不同类型信息与二频机抖激光陀螺零偏误差的相关性对模型进行优化。实验结果表明,该二频机抖激光陀螺零偏误差补偿模型的补偿精度高于传统的补偿方法。  相似文献   

16.
车载机载稳瞄系统FSM补偿技术   总被引:6,自引:0,他引:6  
提出并采用一种粗/精/组合二级稳定的新方案,用于对车、机载多传感器光电综合系统瞄准线(LOS)及图象进行高精度稳定与跟踪。本技术的重要特征是采用挠性支承精稳反射镜(FSM)组件以及粗/精多回路复合控制技术以获得高回路带宽和对扰动的大幅度衰减。用一个双自由度陀螺进行稳定及跟踪,有效地解决了粗/精通道的匹配与耦合。与传统的LOS稳定系统相比较,稳定精度提高近一个数量级  相似文献   

17.
激光陀螺捷联惯导系统元件误差自标定技术   总被引:2,自引:0,他引:2  
通过设计一种实用的激光陀螺捷联惯性导航系统自标定算法,保证在外场使用情况下,能对惯性器件误差(三个陀螺漂移和三个加速度计零位)进行精确标定,确保系统长期使用精度.在完成算法设计的基础上,进行了仿真计算,取得满意的仿真结果.  相似文献   

18.
简要分析了利用陀螺监控技术提高平台罗经系统精度的基本原理及各种监控方法的特点,介绍了采用监控陀螺正、反转对陀螺进行在线测漂及补偿的实验方案,并对采用挠性陀螺进行监控试验所获得的数据进行了分析总结。  相似文献   

19.
在捷联惯性导航系统姿态解算的过程中,陀螺仪器件自身测量精度起到了重要作用。在ADIS16375元器件进行了工厂级校准和提供可选择滤波器库的基础上,针对影响姿态解算精度的最主要的两类误差:固定零偏和随机噪声,建立一种简单实用的特性模型。分别对固定零偏进行校正和采用小波滤波对陀螺仪误差进行补偿。试验结果表明陀螺仪误差补偿在静止状态零偏稳定性和角度漂移抑制方面有显著提高,而运动过程中在对角度漂移抑制的同时也提高了姿态解算精度。  相似文献   

20.
针对诊断传感器偏置故障及漂移故障的难点问题,提出了一种基于多级RBF神经网络集成的传感器故障诊断方法。该方法充分利用控制系统闭环回路测控信息,建立多级神经网络集成观测器模型。将输出与传感器实际输出相比较获取残差序列,获得基于残差序列的传感器偏置故障和漂移故障的辨识策略,实现控制系统传感器故障在线诊断。将三容水箱液位控制系统作为仿真对象,仿真结果表明该方法不仅可以提高单一神经网络的运算精度,而且采用RBF神经网络集成方式还要优于其他集成方式,可以快速准确地检测和分离传感器故障,辨识传感器故障类型、故障大小以及故障发生的时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号