首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present two frameworks for designing random search methods for discrete simulation optimization. One of our frameworks is very broad (in that it includes many random search methods), whereas the other one considers a special class of random search methods called point‐based methods, that move iteratively between points within the feasible region. Our frameworks involve averaging, in that all decisions that require estimates of the objective function values at various feasible solutions are based on the averages of all observations collected at these solutions so far. Also, the methods are adaptive in that they can use information gathered in previous iterations to decide how simulation effort is expended in the current iteration. We show that the methods within our frameworks are almost surely globally convergent under mild conditions. Thus, the generality of our frameworks and associated convergence guarantees makes the frameworks useful to algorithm developers wishing to design efficient and rigorous procedures for simulation optimization. We also present two variants of the simulated annealing (SA) algorithm and provide their convergence analysis as example application of our point‐based framework. Finally, we provide numerical results that demonstrate the empirical effectiveness of averaging and adaptivity in the context of SA. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

2.
We present two random search methods for solving discrete stochastic optimization problems. Both of these methods are variants of the stochastic ruler algorithm. They differ from our earlier modification of the stochastic ruler algorithm in that they use different approaches for estimating the optimal solution. Our new methods are guaranteed to converge almost surely to the set of global optimal solutions under mild conditions. We discuss under what conditions these new methods are expected to converge faster than the modified stochastic ruler algorithm. We also discuss how these methods can be used for solving discrete optimization problems when the values of the objective function are estimated using either transient or steady‐state simulation. Finally, we present numerical results that compare the performance of our new methods with that of the modified stochastic ruler algorithm when applied to solve buffer allocation problems. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

3.
考虑随机回放的卫星数传调度问题的一种求解方法   总被引:2,自引:0,他引:2  
针对考虑随机回放的卫星数传调度问题,从置换空间到调度解空间的映射方法和置换空间的搜索算法两方面进行了研究.提出了一种时间窗优先的置换序列映射算法,并证明该映射算法可以将置换序列映射到调度解空间上的最优解.提出了一种遗传随机搜索算法,基于有记忆功能的随机邻域搜索,在置换空间上搜索产生优化调度的置换序列.仿真计算表明,遗传随机搜索算法可以增强遗传算法的局部搜索能力,在搜索结果上平均获得了2.72%的改进.  相似文献   

4.
In this article, we develop a stochastic approximation algorithm to find good bid price policies for the joint capacity allocation and overbooking problem over an airline network. Our approach is based on visualizing the total expected profit as a function of the bid prices and searching for a good set of bid prices by using the stochastic gradients of the total expected profit function. We show that the total expected profit function that we use is differentiable with respect to the bid prices and derive a simple expression that can be used to compute its stochastic gradients. We show that the iterates of our stochastic approximation algorithm converge to a stationary point of the total expected profit function with probability 1. Our computational experiments indicate that the bid prices computed by our approach perform significantly better than those computed by standard benchmark strategies and the performance of our approach is relatively insensitive to the frequency with which we recompute the bid prices over the planning horizon. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

5.
In this article, we address a stochastic generalized assignment machine scheduling problem in which the processing times of jobs are assumed to be random variables. We develop a branch‐and‐price (B&P) approach for solving this problem wherein the pricing problem is separable with respect to each machine, and has the structure of a multidimensional knapsack problem. In addition, we explore two other extensions of this method—one that utilizes a dual‐stabilization technique and another that incorporates an advanced‐start procedure to obtain an initial feasible solution. We compare the performance of these methods with that of the branch‐and‐cut (B&C) method within CPLEX. Our results show that all B&P‐based approaches perform better than the B&C method, with the best performance obtained for the B&P procedure that includes both the extensions aforementioned. We also utilize a Monte Carlo method within the B&P scheme, which affords the use of a small subset of scenarios at a time to estimate the “true” optimal objective function value. Our experimental investigation reveals that this approach readily yields solutions lying within 5% of optimality, while providing more than a 10‐fold savings in CPU times in comparison with the best of the other proposed B&P procedures. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 131–143, 2014  相似文献   

6.
We study a stochastic outpatient appointment scheduling problem (SOASP) in which we need to design a schedule and an adaptive rescheduling (i.e., resequencing or declining) policy for a set of patients. Each patient has a known type and associated probability distributions of random service duration and random arrival time. Finding a provably optimal solution to this problem requires solving a multistage stochastic mixed‐integer program (MSMIP) with a schedule optimization problem solved at each stage, determining the optimal rescheduling policy over the various random service durations and arrival times. In recognition that this MSMIP is intractable, we first consider a two‐stage model (TSM) that relaxes the nonanticipativity constraints of MSMIP and so yields a lower bound. Second, we derive a set of valid inequalities to strengthen and improve the solvability of the TSM formulation. Third, we obtain an upper bound for the MSMIP by solving the TSM under the feasible (and easily implementable) appointment order (AO) policy, which requires that patients are served in the order of their scheduled appointments, independent of their actual arrival times. Fourth, we propose a Monte Carlo approach to evaluate the relative gap between the MSMIP upper and lower bounds. Finally, in a series of numerical experiments, we show that these two bounds are very close in a wide range of SOASP instances, demonstrating the near‐optimality of the AO policy. We also identify parameter settings that result in a large gap in between these two bounds. Accordingly, we propose an alternative policy based on neighbor‐swapping. We demonstrate that this alternative policy leads to a much tighter upper bound and significantly shrinks the gap.  相似文献   

7.
We consider a discrete time‐and‐space route‐optimization problem across a finite time horizon in which multiple searchers seek to detect one or more probabilistically moving targets. This article formulates a novel convex mixed‐integer nonlinear program for this problem that generalizes earlier models to situations with multiple targets, searcher deconfliction, and target‐ and location‐dependent search effectiveness. We present two solution approaches, one based on the cutting‐plane method and the other on linearization. These approaches result in the first practical exact algorithms for solving this important problem, which arises broadly in military, rescue, law enforcement, and border patrol operations. The cutting‐plane approach solves many realistically sized problem instances in a few minutes, while existing branch‐and‐bound algorithms fail. A specialized cut improves solution time by 50[percnt] in difficult problem instances. The approach based on linearization, which is applicable in important special cases, may further reduce solution time with one or two orders of magnitude. The solution time for the cutting‐plane approach tends to remain constant as the number of searchers grows. In part, then, we overcome the difficulty that earlier solution methods have with many searchers. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

8.
We propose a novel simulation‐based approach for solving two‐stage stochastic programs with recourse and endogenous (decision dependent) uncertainty. The proposed augmented nested sampling approach recasts the stochastic optimization problem as a simulation problem by treating the decision variables as random. The optimal decision is obtained via the mode of the augmented probability model. We illustrate our methodology on a newsvendor problem with stock‐dependent uncertain demand both in single and multi‐item (news‐stand) cases. We provide performance comparisons with Markov chain Monte Carlo and traditional Monte Carlo simulation‐based optimization schemes. Finally, we conclude with directions for future research.  相似文献   

9.
Covering models assume that a point is covered if it is within a certain distance from a facility and not covered beyond that distance. In gradual cover models it is assumed that a point is fully covered within a given distance from a facility, then cover gradually declines, and the point is not covered beyond a larger distance. Gradual cover models address the discontinuity in cover which may not be the correct approach in many situations. In the stochastic gradual cover model presented in this article it is assumed that the short and long distances employed in gradual cover models are random variables. This refinement of gradual cover models provides yet a more realistic depiction of actual behavior in many situations. The maximal cover model based on the new concept is analyzed and the single facility location cover problem in the plane is solved. Computational results illustrating the effectiveness of the solution procedures are presented. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

10.
Characteristically, a small subset of operational problems admit risk neutrality when contingent claims methodology were used in their analysis. That is, for the majority of manufacturing and production problems, operating cash flows are not directly linked to prices of traded assets. However, to the extent that correlations can be estimated, the methodology's applicability to a broader set of operational problems is supported. Our article addresses this issue with the objective of extending the use of contingent claims techniques to a larger set of operational problems. In broad terms, this objective entails a partial equilibrium approach to the problem of valuing uncertain cash flows. To this end, we assume risk aversion and cast our approach within Merton's intertemporal capital asset pricing model. In this context, we formulate a “generic” production valuation model that is framed as an exercise in stochastic optimal control. The model is versatile in its characterization and can easily be adapted to accommodate a wide‐ranging set of risk‐based operational problems where the underlying sources of uncertainty are not traded. To obtain results, the model is recast as a stochastic dynamic program to be solved numerically. The article addresses a number of fundamental issues in the analysis risk based decision problems in operations. First, in the approach provided, decisions are analyzed under a properly defined risk structure. Second, the process of analysis leads to suitably adjusted probability distributions through which, appropriately discounted expectations are derived. Third, through consolidating existing concepts into a standard and adaptable framework, we extend the applicability of contingent claims methodology to a broader set of operational problems. The approach is advantageous as it obviates the need for exogenously specifying utility functions or discount rates.© 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

11.
反潜机是重要的反潜力量,根据反潜机搜潜情况,建立了反潜飞机采用阿基米德螺旋线样式搜潜的数学模型和目标运动模型,讨论了螺旋线采用的三种轨迹间隔,通过仿真验证,确立了反潜机搜潜最优轨迹间隔,以达到提高发现目标潜艇概率、优化反潜效能的目的,为反潜飞机采用阿基米德巡逻线搜潜样式搜潜时提供战术参考。  相似文献   

12.
目标的规避过程与搜索运动   总被引:1,自引:1,他引:0  
应用随机过程的观点,研究了静态目标和动态目标的几种规避方式、运动规律和目标位置的概率分布,导出了在上述几种情况下对规避目标的最优(理论)搜索计划。  相似文献   

13.
The importance of subset selection in multiple regression has been recognized for more than 40 years and, not surprisingly, a variety of exact and heuristic procedures have been proposed for choosing subsets of variables. In the case of polynomial regression, the subset selection problem is complicated by two issues: (1) the substantial growth in the number of candidate predictors, and (2) the desire to obtain hierarchically well‐formulated subsets that facilitate proper interpretation of the regression parameter estimates. The first of these issues creates the need for heuristic methods that can provide solutions in reasonable computation time; whereas the second requires innovative neighborhood search approaches that accommodate the hierarchical constraints. We developed tabu search and variable neighborhood search heuristics for subset selection in polynomial regression. These heuristics are applied to a classic data set from the literature and, subsequently, evaluated in a simulation study using synthetic data sets. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

14.
Leaving marks at the starting points in a rendezvous search problem may provide the players with important information. Many of the standard rendezvous search problems are investigated under this new framework which we call markstart rendezvous search. Somewhat surprisingly, the relative difficulties of analysing problems in the two scenarios differ from problem to problem. Symmetric rendezvous on the line seems to be more tractable in the new setting whereas asymmetric rendezvous on the line when the initial distance is chosen by means of a convex distribution appears easier to analyse in the original setting. Results are also obtained for markstart rendezvous on complete graphs and on the line when the players' initial distance is given by an unknown probability distribution. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 722–731, 2001  相似文献   

15.
This paper addresses optimal power allocation in a wireless communication network under uncertainty. The paper introduces a framework for optimal transmit power allocation in a wireless network where both the useful and interference coefficients are random. The new approach to power control is based on a stochastic programming formulation with probabilistic SIR constraints. This allows to state the power allocation problem as a convex optimization problem assuming normally or log‐normally distributed communication link coefficients. Numerical examples illustrate the performance of the optimal stochastic power allocation. A distributed algorithm for the decentralized solution of the stochastic power allocation problem is discussed. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

16.
We study a stochastic scenario‐based facility location problem arising in situations when facilities must first be located, then activated in a particular scenario before they can be used to satisfy scenario demands. Unlike typical facility location problems, fixed charges arise in the initial location of the facilities, and then in the activation of located facilities. The first‐stage variables in our problem are the traditional binary facility‐location variables, whereas the second‐stage variables involve a mix of binary facility‐activation variables and continuous flow variables. Benders decomposition is not applicable for these problems due to the presence of the second‐stage integer activation variables. Instead, we derive cutting planes tailored to the problem under investigation from recourse solution data. These cutting planes are derived by solving a series of specialized shortest path problems based on a modified residual graph from the recourse solution, and are tighter than the general cuts established by Laporte and Louveaux for two‐stage binary programming problems. We demonstrate the computational efficacy of our approach on a variety of randomly generated test problems. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

17.
Consider a patrol problem, where a patroller traverses a graph through edges to detect potential attacks at nodes. An attack takes a random amount of time to complete. The patroller takes one time unit to move to and inspect an adjacent node, and will detect an ongoing attack with some probability. If an attack completes before it is detected, a cost is incurred. The attack time distribution, the cost due to a successful attack, and the detection probability all depend on the attack node. The patroller seeks a patrol policy that minimizes the expected cost incurred when, and if, an attack eventually happens. We consider two cases. A random attacker chooses where to attack according to predetermined probabilities, while a strategic attacker chooses where to attack to incur the maximal expected cost. In each case, computing the optimal solution, although possible, quickly becomes intractable for problems of practical sizes. Our main contribution is to develop efficient index policies—based on Lagrangian relaxation methodology, and also on approximate dynamic programming—which typically achieve within 1% of optimality with computation time orders of magnitude less than what is required to compute the optimal policy for problems of practical sizes. © 2014 Wiley Periodicals, Inc. Naval Research Logistics, 61: 557–576, 2014  相似文献   

18.
In this article, we introduce staffing strategies for the Erlang‐A queuing system in call center operations with uncertain arrival, service, and abandonment rates. In doing so, we model the system rates using gamma distributions that create randomness in operating characteristics used in the optimization formulation. We divide the day into discrete time intervals where a simulation based stochastic programming method is used to determine staffing levels. More specifically, we develop a model to select the optimal number of agents required for a given time interval by minimizing an expected cost function, which consists of agent and abandonment (opportunity) costs, while considering the service quality requirements such as the delay probability. The objective function as well as the constraints in our formulation are random variables. The novelty of our approach is to introduce a solution method for the staffing of an operation where all three system rates (arrival, service, and abandonment) are random variables. We illustrate the use of the proposed model using both real and simulated call center data. In addition, we provide solution comparisons across different formulations, consider a dynamic extension, and discuss sensitivity implications of changing constraint upper bounds as well as prior hyper‐parameters. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 460–478, 2016  相似文献   

19.
把结构系统动力可靠性分析与最优化设计结合起来 ,以结构系统的最小质量为目标函数 ,给出了考虑在平稳随机过程激励下多自由度线性系统总的可靠性的结构优化设计方法。运用谱分析理论 ,推导了结构系统在平稳随机过程激励下响应的统计特征 ,同时结合首次超越破坏的Possion模型计算结构系统的可靠性 ,最终采用广义乘子法得到结构系统设计变量的最优值。计算结果表明该方法是可行的  相似文献   

20.
We consider the burglar problem in which a burglar can either retire or choose among different types of burglaries, with each type having its own success probability and reward distribution. Some general structural results are established and, in the case of exponentially distributed reward distributions, a solution technique is presented. The burglar problem's relationship to a stochastic knapsack problem with a random exponentially distributed knapsack capacity is shown. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 359–364, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号