首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   6篇
  2023年   1篇
  2020年   3篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   11篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1990年   1篇
  1986年   2篇
  1985年   2篇
  1981年   1篇
  1978年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有51条查询结果,搜索用时 203 毫秒
1.
In this paper, we present an optimization model for coordinating inventory and transportation decisions at an outbound distribution warehouse that serves a group of customers located in a given market area. For the practical problems which motivated this paper, the warehouse is operated by a third party logistics provider. However, the models developed here may be applicable in a more general context where outbound distribution is managed by another supply chain member, e.g., a manufacturer. We consider the case where the aggregate demand of the market area is constant and known per period (e.g., per day). Under an immediate delivery policy, an outbound shipment is released each time a demand is realized (e.g., on a daily basis). On the other hand, if these shipments are consolidated over time, then larger (hence more economical) outbound freight quantities can be dispatched. In this case, the physical inventory requirements at the third party warehouse (TPW) are determined by the consolidated freight quantities. Thus, stock replenishment and outbound shipment release policies should be coordinated. By optimizing inventory and freight consolidation decisions simultaneously, we compute the parameters of an integrated inventory/outbound transportation policy. These parameters determine: (i) how often to dispatch a truck so that transportation scale economies are realized and timely delivery requirements are met, and (ii) how often, and in what quantities, the stock should be replenished at the TPW. We prove that the optimal shipment release timing policy is nonstationary, and we present algorithms for computing the policy parameters for both the uncapacitated and finite cargo capacity problems. The model presented in this study is considerably different from the existing inventory/transportation models in the literature. The classical inventory literature assumes that demands should be satisfied as they arrive so that outbound shipment costs are sunk costs, or else these costs are covered by the customer. Hence, the classical literature does not model outbound transportation costs. However, if a freight consolidation policy is in place then the outbound transportation costs can no longer be ignored in optimization. Relying on this observation, this paper models outbound transportation costs, freight consolidation decisions, and cargo capacity constraints explicitly. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 531–556, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10030  相似文献   
2.
We consider a general linear filtering operation on an autoregressive moving average (ARMA) time series. The variance of the filter output, which is an important quantity in many applications, is not known with certainty because it depends on the true ARMA parameters. We derive an expression for the sensitivity (i.e., the partial derivative) of the output variance with respect to deviations in the model parameters. The results provide insight into the robustness of many common statistical methods that are based on linear filtering and also yield approximate confidence intervals for the output variance. We discuss applications to time series forecasting, statistical process control, and automatic feedback control of industrial processes. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
3.
Capacity providers such as airlines and hotels have traditionally increased revenues by practicing market segmentation and revenue management, enabling them to sell the same capacity pool to different consumers at different prices. Callable products can enhance profits and improve consumers' welfare by allowing the firm to broker capacity between consumers with different willingness to pay. A consumer who buys a callable product gives the capacity provider the right to recall capacity at a prespecified recall price. This article studies callable products in the context of the model most commonly used in industry, which handles time implicitly imposing fewer restrictions on the nature of randomness compared to the Poisson arrival process favored in academia. In the implicit time model, capacity providers set booking limits to protect capacity for future high-fare demand. Our numerical study identifies conditions where callable products result in significant gains in profits.  相似文献   
4.
We study a component inventory planning problem in an assemble‐to‐order environment faced by many contract manufacturers in which both quick delivery and efficient management of component inventory are crucial for the manufacturers to achieve profitability in a highly competitive market. Extending a recent study in a similar problem setting by the same authors, we analyze an optimization model for determining the optimal component stocking decision for a contract manufacturer facing an uncertain future demand, where product price depends on the delivery times. In contrast to our earlier work, this paper considers the situation where the contract manufacturer needs to deliver the full order quantity in one single shipment. This delivery requirement is appropriate for many industries, such as the garment and toy industries, where the economies of scale in transportation is essential. We develop efficient solution procedures for solving this optimization problem. We use our model results to illustrate how the different model parameters affect the optimal solution. We also compare the results under this full‐shipment model with those from our earlier work that allows for multiple partial shipments. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
5.
6.
7.
Consider an auction in which increasing bids are made in sequence on an object whose value θ is known to each bidder. Suppose n bids are received, and the distribution of each bid is conditionally uniform. More specifically, suppose the first bid X1 is uniformly distributed on [0, θ], and the ith bid is uniformly distributed on [Xi?1, θ] for i = 2, …?, n. A scenario in which this auction model is appropriate is described. We assume that the value θ is un known to the statistician and must be esimated from the sample X1, X2, …?, Xn. The best linear unbiased estimate of θ is derived. The invariance of the estimation problem under scale transformations in noted, and the best invariant estimation problem under scale transformations is noted, and the best invariant estimate of θ under loss L(θ, a) = [(a/θ) ? 1]2 is derived. It is shown that this best invariant estimate has uniformly smaller mean-squared error than the best linear unbiased estimate, and the ratio of the mean-squared errors is estimated from simulation experiments. A Bayesian formulation of the estimation problem is also considered, and a class of Bayes estimates is explicitly derived.  相似文献   
8.
This paper studies a scheduling problem arising in a beef distribution system where pallets of various types of beef products in the warehouse are first depalletized and then individual cases are loaded via conveyors to the trucks which deliver beef products to various customers. Given each customer's demand for each type of beef, the problem is to find a depalletizing and truck loading schedule that fills all the demands at a minimum total cost. We first show that the general problem where there are multiple trucks and each truck covers multiple customers is strongly NP‐hard. Then we propose polynomial‐time algorithms for the case where there are multiple trucks, each covering only one customer, and the case where there is only one truck covering multiple customers. We also develop an optimal dynamic programming algorithm and a heuristic for solving the general problem. By comparing to the optimal solutions generated by the dynamic programming algorithm, the heuristic is shown to be capable of generating near optimal solutions quickly. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
9.
In this article we introduce a 2‐machine flowshop with processing flexibility. Two processing modes are available for each task: namely, processing by the designated processor, and processing simultaneously by both processors. The objective studied is makespan minimization. This production environment is encountered in repetitive manufacturing shops equipped with processors that have the flexibility to execute orders either individually or in coordination. In the latter case, the product designer exploits processing synergies between two processors so as to execute a particular task much faster than a dedicated processor. This type of flowshop environment is also encountered in labor‐intensive assembly lines where products moving downstream can be processed either in the designated assembly stations or by pulling together the work teams of adjacent stations. This scheduling problem requires determining the mode of operation of each task, and the subsequent scheduling that preserves the flowshop constraints. We show that the problem is ordinary NP‐complete and obtain an optimal solution using a dynamic programming algorithm with considerable computational requirements for medium and large problems. Then, we present a number of dynamic programming relaxations and analyze their worst‐case error performance. Finally, we present a polynomial time heuristic with worst‐case error performance comparable to that of the dynamic programming relaxations. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
10.
Entering the twenty-first century, China has demonstrated an assertive foreign policy, not only in employing various types of economic and military leverage but also in conducting the Three Warfares (三战) – psychological warfare, public opinion warfare, and legal warfare. This article attempts to identify the motives and methods of China’s Three Warfares by analyzing its history, logic, and agents. Based on this analysis, the author also presents the position of the Three Warfares in China’s foreign policy and the warfares’ impact on the international security environment involving other major powers and China’s neighbors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号