首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 981 毫秒
1.
We consider a two‐stage supply chain, in which multi‐items are shipped from a manufacturing facility or a central warehouse to a downstream retailer that faces deterministic external demand for each of the items over a finite planning horizon. The items are shipped through identical capacitated vehicles, each incurring a fixed cost per trip. In addition, there exist item‐dependent variable shipping costs and inventory holding costs at the retailer for items stored at the end of the period; these costs are constant over time. The sum of all costs must be minimized while satisfying the external demand without backlogging. In this paper we develop a search algorithm to solve the problem optimally. Our search algorithm, although exponential in the worst case, is very efficient empirically due to new properties of the optimal solution that we found, which allow us to restrict the number of solutions examined. Second, we perform a computational study that compares the empirical running time of our search methods to other available exact solution methods to the problem. Finally, we characterize the conditions under which each of the solution methods is likely to be faster than the others and suggest efficient heuristic solutions that we recommend using when the problem is large in all dimensions. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006.  相似文献   

2.
We study a stochastic scenario‐based facility location problem arising in situations when facilities must first be located, then activated in a particular scenario before they can be used to satisfy scenario demands. Unlike typical facility location problems, fixed charges arise in the initial location of the facilities, and then in the activation of located facilities. The first‐stage variables in our problem are the traditional binary facility‐location variables, whereas the second‐stage variables involve a mix of binary facility‐activation variables and continuous flow variables. Benders decomposition is not applicable for these problems due to the presence of the second‐stage integer activation variables. Instead, we derive cutting planes tailored to the problem under investigation from recourse solution data. These cutting planes are derived by solving a series of specialized shortest path problems based on a modified residual graph from the recourse solution, and are tighter than the general cuts established by Laporte and Louveaux for two‐stage binary programming problems. We demonstrate the computational efficacy of our approach on a variety of randomly generated test problems. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

3.
We consider the shortest path interdiction problem involving two agents, a leader and a follower, playing a Stackelberg game. The leader seeks to maximize the follower's minimum costs by interdicting certain arcs, thus increasing the travel time of those arcs. The follower may improve the network after the interdiction by lowering the costs of some arcs, subject to a cardinality budget restriction on arc improvements. The leader and the follower are both aware of all problem data, with the exception that the leader is unaware of the follower's improvement budget. The effectiveness of an interdiction action is given by the length of a shortest path after arc costs are adjusted by both the interdiction and improvement. We propose a multiobjective optimization model for this problem, with each objective corresponding to a different possible improvement budget value. We provide mathematical optimization techniques to generate a complete set of strategies that are Pareto‐optimal. Additionally, for the special case of series‐parallel graphs, we provide a dynamic‐programming algorithm for generating all Pareto‐optimal solutions.  相似文献   

4.
In this paper we consider the problem of scheduling a set of jobs on a single machine on which a rate‐modifying activity may be performed. The rate‐modifying activity is an activity that changes the production rate of the machine. So the processing time of a job is a variable, which depends on whether it is scheduled before or after the rate‐modifying activity. We assume that the rate‐modifying activity can take place only at certain predetermined time points, which is a constrained case of a similar problem discussed in the literature. The decisions under consideration are whether and when to schedule the rate‐modifying activity, and how to sequence the jobs in order to minimize some objectives. We study the problems of minimizing makespan and total completion time. We first analyze the computational complexity of both problems for most of the possible versions. The analysis shows that the problems are NP‐hard even for some special cases. Furthermore, for the NP‐hard cases of the makespan problem, we present a pseudo‐polynomial time optimal algorithm and a fully polynomial time approximation scheme. For the total completion time problem, we provide a pseudo‐polynomial time optimal algorithm for the case with agreeable modifying rates. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

5.
This paper considers a new class of scheduling problems arising in logistics systems in which two different transportation modes are available at the stage of product delivery. The mode with the shorter transportation time charges a higher cost. Each job ordered by the customer is first processed in the manufacturing facility and then transported to the customer. There is a due date for each job to arrive to the customer. Our approach integrates the machine scheduling problem in the manufacturing stage with the transportation mode selection problem in the delivery stage to achieve the global maximum benefit. In addition to studying the NP‐hard special case in which no tardy job is allowed, we consider in detail the problem when minimizing the sum of the total transportation cost and the total weighted tardiness cost is the objective. We provide a branch and bound algorithm with two different lower bounds. The effectiveness of the two lower bounds is discussed and compared. We also provide a mathematical model that is solvable by CPLEX. Computational results show that our branch and bound algorithm is more efficient than CPLEX. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

6.
We consider a class of facility location problems with a time dimension, which requires assigning every customer to a supply facility in each of a finite number of periods. Each facility must meet all assigned customer demand in every period at a minimum cost via its production and inventory decisions. We provide exact branch‐and‐price algorithms for this class of problems and several important variants. The corresponding pricing problem takes the form of an interesting class of production planning and order selection problems. This problem class requires selecting a set of orders that maximizes profit, defined as the revenue from selected orders minus production‐planning‐related costs incurred in fulfilling the selected orders. We provide polynomial‐time dynamic programming algorithms for this class of pricing problems, as well as for generalizations thereof. Computational testing indicates the advantage of our branch‐and‐price algorithm over various approaches that use commercial software packages. These tests also highlight the significant cost savings possible from integrating location with production and inventory decisions and demonstrate that the problem is rather insensitive to forecast errors associated with the demand streams. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

7.
The manufacturing process for a computer chip is complex in that it involves a large number of distinct operations requiring a substantial lead‐time for completion. Our observations of such a manufacturing process at a large plant in the United States led us to identify several tactical and operational problems that were being addressed by the production planners on a recurring basis. This paper focuses on one such problem. At a tactical level, given a demand forecast of wafers to be manufactured, one specific problem deals with specifying which machine or machine groups will process different batches of wafers. We address this problem by recognizing the capacity limitations of the individual machines as well as the requirement for reducing operating and investment costs related to the machines. A mathematical model, which is a variation of the well‐known capacitated facility location problem, is proposed to solve this problem. Given the intractability of the model, we first develop problem specific lower bounding procedures based on Lagrangean relaxation. We also propose a heuristic method to obtain “good” solutions with reasonable computational effort. Computational tests, using hypothetical and industry‐based data, indicate that our heuristic approach provides optimal/near optimal solutions fairly quickly. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

8.
This paper develops a new model for allocating demand from retailers (or customers) to a set of production/storage facilities. A producer manufactures a product in multiple production facilities, and faces demand from a set of retailers. The objective is to decide which of the production facilities should satisfy each retailer's demand, in order minimize total production, inventory holding, and assignment costs (where the latter may include, for instance, variable production costs and transportation costs). Demand occurs continuously in time at a deterministic rate at each retailer, while each production facility faces fixed‐charge production costs and linear holding costs. We first consider an uncapacitated model, which we generalize to allow for production or storage capacities. We then explore situations with capacity expansion opportunities. Our solution approach employs a column generation procedure, as well as greedy and local improvement heuristic approaches. A broad class of randomly generated test problems demonstrates that these heuristics find high quality solutions for this large‐scale cross‐facility planning problem using a modest amount of computation time. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

9.
Competitive imperatives are causing manufacturing firms to consider multiple criteria when designing products. However, current methods to deal with multiple criteria in product design are ad hoc in nature. In this paper we present a systematic procedure to efficiently solve bicriteria product design optimization problems. We first present a modeling framework, the AND/OR tree, which permits a simplified representation of product design optimization problems. We then show how product design optimization problems on AND/OR trees can be framed as network design problems on a special graph—a directed series‐parallel graph. We develop an enumerative solution algorithm for the bicriteria problem that requires as a subroutine the solution of the parametric shortest path problem. Although this parametric problem is hard on general graphs, we show that it is polynomially solvable on the series‐parallel graph. As a result we develop an efficient solution algorithm for the product design optimization problem that does not require the use of complex and expensive linear/integer programming solvers. As a byproduct of the solution algorithm, sensitivity analysis for product design optimization is also efficiently performed under this framework. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 574–592, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10031  相似文献   

10.
We study the quadratic bottleneck problem (QBP) which generalizes several well‐studied optimization problems. A weak duality theorem is introduced along with a general purpose algorithm to solve QBP. An example is given which illustrates duality gap in the weak duality theorem. It is shown that the special case of QBP where feasible solutions are subsets of a finite set having the same cardinality is NP‐hard. Likewise the quadratic bottleneck spanning tree problem (QBST) is shown to be NP‐hard on a bipartite graph even if the cost function takes 0–1 values only. Two lower bounds for QBST are derived and compared. Efficient heuristic algorithms are presented for QBST along with computational results. When the cost function is decomposable, we show that QBP is solvable in polynomial time whenever an associated linear bottleneck problem can be solved in polynomial time. As a consequence, QBP with feasible solutions form spanning trees, s‐t paths, matchings, etc., of a graph are solvable in polynomial time with a decomposable cost function. We also show that QBP can be formulated as a quadratic minsum problem and establish some asymptotic results. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

11.
Motivated by the flow of products in the iron and steel industry, we study an identical and parallel machine scheduling problem with batch deliveries, where jobs finished on the parallel machines are delivered to customers in batches. Each delivery batch has a capacity and incurs a cost. The objective is to find a coordinated production and delivery schedule that minimizes the total flow time of jobs plus the total delivery cost. This problem is an extension of the problem considered by Hall and Potts, Ann Oper Res 135 (2005) 41–64, who studied a two‐machine problem with an unbounded number of transporters and unbounded delivery capacity. We first provide a dynamic programming algorithm to solve a special case with a given job assignment to the machines. A heuristic algorithm is then presented for the general problem, and its worst‐case performance ratio is analyzed. The computational results show that the heuristic algorithm can generate near‐optimal solutions. Finally, we offer a fully polynomial‐time approximation scheme for a fixed number of machines. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 492–502, 2016  相似文献   

12.
Having a robustly designed supply chain network is one of the most effective ways to hedge against network disruptions because contingency plans in the event of a disruption are often significantly limited. In this article, we study the facility reliability problem: how to design a reliable supply chain network in the presence of random facility disruptions with the option of hardening selected facilities. We consider a facility location problem incorporating two types of facilities, one that is unreliable and another that is reliable (which is not subject to disruption, but is more expensive). We formulate this as a mixed integer programming model and develop a Lagrangian Relaxation‐based solution algorithm. We derive structural properties of the problem and show that for some values of the disruption probability, the problem reduces to the classical uncapacitated fixed charge location problem. In addition, we show that the proposed solution algorithm is not only capable of solving large‐scale problems, but is also computationally effective. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

13.
We focus on the concave‐cost version of a production planning problem where a manufacturer can meet demand by either producing new items or by remanufacturing used items. Unprocessed used items are disposed. We show the NP‐hardness of the problem even when all the costs are stationary. Utilizing the special structure of the extreme‐point optimal solutions for the minimum concave‐cost problem with a network flow type feasible region, we develop a polynomial‐time heuristic for the problem. Our computational study indicates that the heuristic is a very efficient way to solve the problem as far as solution speed and quality are concerned. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

14.
In this paper we propose and solve a competitive facility location model when demand is continuously distributed in an area and each facility attracts customers within a given distance. This distance is a measure of the facility's attractiveness level which may be different for different facilities. The market share captured by each facility is calculated by two numerical integration methods. These approaches can be used for evaluating functional values in other operations research models as well. The single facility location problem is optimally solved by the big triangle small triangle global optimization algorithm and the multiple facility problem is heuristically solved by the Nelder‐Mead algorithm. Extensive computational experiments demonstrate the effectiveness of the solution approaches.  相似文献   

15.
A U‐line arranges tasks around a U‐shaped production line and organizes them into stations that can cross from one side of the line to the other. In addition to improving visibility and communication between operators on the line, which facilitates problem‐solving and quality improvement, U‐lines can reduce the total number of operators required on the line and make rebalancing the line easier compared to the traditional, straight production line. This paper studies the (type 1) U‐line balancing problem when task completion times are stochastic. Stochastic completion times occur when differences between operators cause completion times to vary somewhat and when machine processing times vary. A recursive algorithm is presented for finding the optimal solution when completion times have any distribution function. An equivalent shortest path network is also presented. An improvement for the special case of normally distributed task completion times is given. A computational study to determine the characteristics of instances that can be solved by the algorithms shows that they are able to solve instances of practical size (like the 114 Japanese and U.S. U‐lines studied in a literature review paper). © 2002 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

16.
We consider a short‐term capacity allocation problem with tool and setup constraints that arises in the context of operational planning in a semiconductor wafer fabrication facility. The problem is that of allocating the available capacity of parallel nonidentical machines to available work‐in‐process (WIP) inventory of operations. Each machine can process a subset of the operations and a tool setup is required on a machine to change processing from one operation to another. Both the number of tools available for an operation and the number of setups that can be performed on a machine during a specified time horizon are limited. We formulate this problem as a degree‐constrained network flow problem on a bipartite graph, show that the problem is NP‐hard, and propose constant factor approximation algorithms. We also develop constructive heuristics and a greedy randomized adaptive search procedure for the problem. Our computational experiments demonstrate that our solution procedures solve the problem efficiently, rendering the use of our algorithms in real environment feasible. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

17.
This paper studies a scheduling problem arising in a beef distribution system where pallets of various types of beef products in the warehouse are first depalletized and then individual cases are loaded via conveyors to the trucks which deliver beef products to various customers. Given each customer's demand for each type of beef, the problem is to find a depalletizing and truck loading schedule that fills all the demands at a minimum total cost. We first show that the general problem where there are multiple trucks and each truck covers multiple customers is strongly NP‐hard. Then we propose polynomial‐time algorithms for the case where there are multiple trucks, each covering only one customer, and the case where there is only one truck covering multiple customers. We also develop an optimal dynamic programming algorithm and a heuristic for solving the general problem. By comparing to the optimal solutions generated by the dynamic programming algorithm, the heuristic is shown to be capable of generating near optimal solutions quickly. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

18.
An important class of network flow problems is that class for which the objective is to minimize the cost of the most expensive unit of flow while obtaining a desired total flow through the network. Two special cases of this problem have been solved, namely, the bottleneck assignment problem and time-minimizing transportation problem. This paper addresses the more general case which we shall refer to as the time-minimizing network flow problem. Associated with each arc is an arc capacity (static) and a transferral time. The objective is to find a maximal flow for which the length (in time) of the longest path carrying flow is minimized. The character of the problem is discussed and a solution algorithm is presented.  相似文献   

19.
We consider a multi‐stage inventory system composed of a single warehouse that receives a single product from a single supplier and replenishes the inventory of n retailers through direct shipments. Fixed costs are incurred for each truck dispatched and all trucks have the same capacity limit. Costs are stationary, or more generally monotone as in Lippman (Management Sci 16, 1969, 118–138). Demands for the n retailers over a planning horizon of T periods are given. The objective is to find the shipment quantities over the planning horizon to satisfy all demands at minimum system‐wide inventory and transportation costs without backlogging. Using the structural properties of optimal solutions, we develop (1) an O(T2) algorithm for the single‐stage dynamic lot sizing problem; (2) an O(T3) algorithm for the case of a single‐warehouse single‐retailer system; and (3) a nested shortest‐path algorithm for the single‐warehouse multi‐retailer problem that runs in polynomial time for a given number of retailers. To overcome the computational burden when the number of retailers is large, we propose aggregated and disaggregated Lagrangian decomposition methods that make use of the structural properties and the efficient single‐stage algorithm. Computational experiments show the effectiveness of these algorithms and the gains associated with coordinated versus decentralized systems. Finally, we show that the decentralized solution is asymptotically optimal. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

20.
In this article, we introduce the capacitated warehouse location model with risk pooling (CLMRP), which captures the interdependence between capacity issues and the inventory management at the warehouses. The CLMRP models a logistics system in which a single plant ships one type of product to a set of retailers, each with an uncertain demand. Warehouses serve as the direct intermediary between the plant and the retailers for the shipment of the product and also retain safety stock to provide appropriate service levels to the retailers. The CLMRP minimizes the sum of the fixed facility location, transportation, and inventory carrying costs. The model simultaneously determines warehouse locations, shipment sizes from the plant to the warehouses, the working inventory, and safety stock levels at the warehouses and the assignment of retailers to the warehouses. The costs at each warehouse exhibit initially economies of scale and then an exponential increase due to the capacity limitations. We show that this problem can be formulated as a nonlinear integer program in which the objective function is neither concave nor convex. A Lagrangian relaxation solution algorithm is proposed. The Lagrangian subproblem is also a nonlinear integer program. An efficient algorithm is developed for the linear relaxation of this subproblem. The Lagrangian relaxation algorithm provides near‐optimal solutions with reasonable computational requirements for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号