首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The core-shell 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-Trinitrotoluene (CL-20/TNT) composite was prepared by spray-drying method in which sensitive high energy explosive (CL-20) was coated with insensitive explosive (TNT). The structure and properties of different formulations of CL-20/TNT composite and CL-20/TNT mixture were characterized by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Laser particle size analyzer, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impact sensitivity test and detonation performance. The results of SEM, TEM, XPS and XRD show that ϵ-CL-20 particles are coated by TNT. When the ratio of CL-20/TNT is 75/25, core-shell structure is well formed, and thickness of the shell is about 20–30 nm. And the analysis of heat and impact show that with the increase of TNT content, the TNT coating on the core-shell composite material can not only catalyze the thermal decomposition of core material (CL-20), but also greatly reduce the impact sensitivity. Compared with the CL-20/TNT mixture (75/25) at the same ratio, the characteristic drop height of core-shell CL-20/TNT composite (75/25) increased by 47.6% and the TNT coating can accelerate the nuclear decomposition in the CL-20/TNT composites. Therefore, the preparation of the core-shell composites can be regarded as a unique means, by which the composites are characterized by controllable decomposition rate, high energy and excellent mechanical sensitivity and could be applied to propellants and other fields.  相似文献   

2.
A new type of explosive ink formulation that can be quickly cured was prepared with unsaturated polyester as binder,styrene as active monomer,2,4,6-trimethylbenzoyl-diphenylphosphine oxide as photoinitiator,and hexanitrohexaazaisowurtzitane (CL-20) as the main explosive.Then the explosive ink direct writing technology was used to charge the micro-sized energetic devices,the curing mechanism of the explosive ink was discussed,and the microstructure,safety performance and explosive transfer performance of the explosive ink molded samples were tested and analyzed.Results indicate that the composite material has a fast curing molding speed,its hardness can reach 2H within 8 min.The crystal form of CL-20 in the molded sample is still ε type.The CL-20 based W-curing explosive ink formulation has good compatibility,its apparent activation energy is increased by about 3.5 kJ/mol.The composite presents a significant reduction in impact sensitivity and its characteristic drop height can reach 39.8 cm,which is about 3 times higher than the raw material.When the line width of charge is 1.0 mm,the critical thickness of the explosion can reach 0.015 mm,and the explosion velocity is 7129 m/s when the charge density is 1.612 g/cm3.  相似文献   

3.
《防务技术》2022,18(10):1886-1894
Improving the thermal decomposition performance of hexanitrohexaazaisowurtzitane (CL-20) by appropriate methods is helpful to promote the combustion performance of CL-20-based solid propellants. In this study, we synthesized a sandwich structure of CL-20 and nanoporous carbon scaffolds film (NCS) and emphatically studied the thermal decomposition performance of the composite structure. Thermogravimetric analysis and differential scanning calorimetry were used to measure the thermal decomposition process of the composite structure. The kinetic parameters of thermal decomposition were calculated by the thermal dynamic analysis software AKTS. These results showed that the thermal decomposition performance of the sandwich structure of CL-20 and NCS was better than CL-20. Among the tested samples, NCS with a pore size of 15 nm had the best catalytic activity for the thermal decomposition of CL-20. Moreover, the thermal decomposition curve of the composite structure at the heating rate of 1 K/min was deconvoluted by mathematical method to study the thermal decomposition process. And a possible catalytic mechanism was proposed. The excellent thermal decomposition performance is due to the sandwich structure enhances the interface reaction of CL-20 and NCS. This work may promote the extensive use of CL-20 in the field of solid rocket propellant.  相似文献   

4.
《防务技术》2022,18(10):1748-1759
Three-dimensional (3D) micro-jet printing is a droplet deposition technique based on liquid-phase materials. To improve the deposition density and performance of energetic films with micro/nanoscale on an energetic chip, polydopamine (PDA) was utilized as a linker bridge to induce the in-situ self-assembly of CL-20-based energetic film via 3D micro-jet printing. The self-assembly was extensively characterized by confocal laser scanning microscopy (CLSM), SEM, power-XRD, XPS, and DSC. The performance of the self-assembled film was verified by the mechanical properties and detonation properties, and a possible self-assembly mechanism in the layer-by-layer micro-jet printing process was proposed. The results indicated PDA-induced self-assembly enhanced the physical entanglement between the binders and energetic crystal, reduced the porosity from 15.87% to 11.28%, and improved the elastic modulus and the detonation performance of the CL-20-based energetic film. This work proposes a novel and promising energetic film design and fabrication strategy to enhance the interaction between the energetic composite layers in the micro-jet printing process.  相似文献   

5.
《防务技术》2020,16(1):188-200
The present day weapon technology demands novel energetic materials that exhibit simultaneous high explosive yield and reduced sensitivity. This article demonstrates application of spray evaporation to prepare reduced sensitive co-crystals of high performance nitramine explosives like HMX and CL-20 with a relatively less insensitive explosive 1,1-diamino-2,2-dinitroethylene or FOX-7. Stronger intermolecular hydrogen bonding in FOX-7 is responsible for limited solubility in most of organic solvents. Large solubility differences of FOX-7 with HMX and CL-20 restricts it's co-crystallization through classical methods that yields thermodynamically favorable product. Spray flash evaporation, a kinetic crystallization method, has been therefore adopted and could successfully produce CL-20/FOX-7 (2:1) and HMX/FOX-7 (4:1) co-crystals. The fine powdered materials obtained were characterized by SEM, powder XRD, Raman spectroscopy, DSC-TGA etc. Multipoint Raman spectra showed consistent occurrence of spectral features indicating stoichiometric co-existence of ingredients in the crystal lattices. DSC analysis showed absence of all thermally assisted solid-solid phase transformation in the co-crystals as they were observed in pristine materials. The thermal stability calculated in terms of activation barrier for decomposition, revealed the CL-20/FOX-7 co-crystal to be intermediately stable on comparison to their constituents while, the HMX/FOX-7 co-crystal is more stable. Compared to pure HMX and CL-20, both the co-crystals have shown higher insensitivity to impact force, suggesting them to be suitable for future generation insensitive munitions.  相似文献   

6.
《防务技术》2014,10(2):184-189
Nano-nitramine explosives (RDX, HMX, CL-20) are produced on a bi-directional grinding mill. The scanning electron microscope (SEM) observations show that the prepared particles are semi-spherical, and the narrow size distributions are characterized using the laser particle size analyzer. Compared with the micron-sized samples, the nano-products show obvious decrease in friction and impact sensitivities. In the case of shock sensitivities, nano-products have lower values by 59.9% (RDX), 56.4% (HMX), and 58.1% (CL-20), respectively. When nano-RDX and nano-HMX are used in plastic bonded explosives (PBX) as alternative materials of micron-sized particles, their shock sensitivities are significantly decreased by 24.5% (RDX) and 22.9% (HMX), and their detonation velocities are increased by about 1.7%. Therefore, it is expected to promote the application of nano-nitramine explosives in PBXs and composite modified double-based propellants (CMDBs) so that some of their properties would be improved.  相似文献   

7.
《防务技术》2020,16(2):487-492
A well-known ternary plastic explosive, Czech Semtex 1H, contains a mixture of PETN and RDX softened by SBR. In this work, BCHMX was used to replace PETN in Semtex 1H to form Sem-BC+RDX. In addition, another mixture based on BCHMX and HMX as energetic fillers bonded by the polymeric matrix of Semtex 1H (Sem-BC+HMX) was studied. The particle size distribution of each individual explosive was determined to obtain the optimum mixing conditions. Friction and impact sensitivities were determined. The velocity of detonation was reported practically and the detonation properties were calculated by EXPLO5 code. The explosive strength of each sample was measured by the ballistic mortar test. The conclusion confirms that the velocity of detonation of Sem-BC+HMX was the highest in comparison with the prepared samples. Sem-BC+RDX has the least impact and frictions sensitivities. Sem-BC+RDX has higher detonation velocity, detonation properties and explosive strength than Semtex 1H. Addition of BCHMX in Semtex 1H as a replacement for PETN is the candidate to produce a high performance advanced Czech plastic explosive.  相似文献   

8.
Nano-sized aluminum(Nano-Al)powders hold promise in enhancing the total energy of explosives and the metal acceleration ability at the same time.However,the near-detonation zone effects of reaction between Nano-Al with detonation products remain unclear.In this study,the overall reaction process of 170 nm Al with RDX explosive and its effect on detonation characteristics,detonation reaction zone,and the metal acceleration ability were comprehensively investigated through a variety of experiments such as the detonation velocity test,detonation pressure test,explosive/window interface velocity test and confined plate push test using high-resolution laser interferometry.Lithium fluoride(LiF),which has an inert behavior during the explosion,was used as a control to compare the contribution of the reaction of aluminum.A thermochemical approach that took into account the reactivity of aluminum and ensuing detonation products was adopted to calculate the additional energy release by afterburn.Combining the numerical simulations based on the calculated afterburn energy and experimental results,the param-eters in the detonation equation of state describing the Nano-Al reaction characteristics were calibrated.This study found that when the 170 nm Al content is from 0%to 15%,every 5%increase of aluminum resulted in about a 1.3%decrease in detonation velocity.Manganin pressure gauge measurement showed no significant enhancement in detonation pressure.The detonation reaction time and reaction zone length of RDX/Al/wax/80/15/5 explosive is 64 ns and 0.47 mm,which is respectively 14%and 8%higher than that of RDX/wax/95/5 explosive(57 ns and 0.39 mm).Explosive/window interface velocity curves show that 170 nm Al mainly reacted with the RDX detonation products after the detonation front.For the recording time of about 10 μs throughout the plate push test duration,the maximum plate velocity and plate acceleration time accelerated by RDX/Al/wax/80/15/5 explosive is 12%and 2.9 μs higher than that of RDX/LiF/wax/80/15/5,respectively,indicating that the aluminum reaction energy significantly increased the metal acceleration time and ability of the explosive.Numerical simulations with JWLM explosive equation of state show that when the detonation products expanded to 2 times the initial volume,over 80%of the aluminum had reacted,implying very high reactivity.These results are significant in attaining a clear understanding of the reaction mechanism of Nano-Al in the development of aluminized explosives.  相似文献   

9.
《防务技术》2014,10(2):190-197
Plane wave generators (PWGs) are used to accelerate flyer plates to high velocities with their generated plane waves, which are widely used in the test of dynamic properties of materials. The traditional PWG is composed of two explosives with different detonation velocities. It is difficult to implement the related fabrication processes and control the generated waves due to its complicated structures. A simple plane wave generator is presented in this paper, which is composed of two identical cylindrical high explosive (HE) charges and an air-metal barrier. A theoretical model was established based on two different paths of the propagation of detonation waves, based on which the size of air-metal barrier was calculated for a given charge. The corresponding numerical simulations were also carried out by AUTODYN-2D® based on the calculated results, which were used to compare with the theoretical calculations. A detonation wave with a flatness of 0.039 μs within the range of 70-percent diameter of the main charge was obtained through the simulations.  相似文献   

10.
涂覆型RAM的研究现状和发展趋势   总被引:3,自引:0,他引:3  
涂覆型RAM 技术是隐身技术中的重要技术之一,并在隐身武器系统中得到广泛应用。首先分析阐述了涂覆型RAM 的重要地位,然后介绍了铁氧体RAM、超细金属粉末RAM、高分子聚合物RAM 的研究和应用现状。最后介绍了手性材料、纳米材料、多频谱RAM 及智能隐身材料的最新研究状况  相似文献   

11.
The explosive reaction degree and protection from explosions are concerns in the military field.In this work,the reaction degree of the composition B explosive was investigated experimentally.Multi-layered compound structures were used as barriers to weaken the blast loads.A comprehensive experiment using a high-speed camera and image processing techniques,side witness plates,and bottom witness plates was presented.Using the experimental fragment velocities,fragment piercing patterns,and damage characteristics,the reaction degree of the explosive impeded by different multi-layered com-pound structures could be precisely differentiated.Reaction parameters of the explosive obstructed by compound structures were obtained by theoretical analysis and numerical simulations.Unlike the common method in which the explosive reaction degree is only distinguished based on the initial pressure amplitude transmitted into the explosive,a following shock wave reflected from the side steel casing was also considered.Different detonation growth paths in the explosive formed.Therefore,all these shock wave propagation characteristics must be considered to analyze the explosive response impeded by compound structures.  相似文献   

12.
Explosive welding technique is widely used in many industries. This technique is useful to weld different kinds of metal alloys that are not easily welded by any other welding methods. Interlayer plays an important role to improve the welding quality and control energy loss during the collision process. In this paper, the Ti6Al4V plate was welded with a copper plate in the presence of a commercially pure titanium interlayer. Microstructure details of welded composite plate were observed through optical and scanning electron microscope. Interlayer-base plate interface morphology showed a wavy structure with solid melted regions inside the vortices. Moreover, the energy dispersive spectroscopy analysis in the interlayer-base interface reveals that there are some identified regions of different kinds of chemical equilibrium phases of Cu–Ti, i.e. CuTi, Cu2Ti, CuTi2, Cu4Ti, etc. To study the mechanical properties of composite plates, mechanical tests were conducted, including the tensile test, bending test, shear test and Vickers hardness test. Numerical simulation of explosive welding process was performed with coupled Smooth Particle Hydrodynamic method, Euler and Arbitrary Lagrangian-Eulerian method. The multi-physics process of explosive welding, including detonation, jetting and interface morphology, was observed with simulation. Moreover, simulated plastic strain, temperature and pressure profiles were analysed to understand the welding conditions. Simulated results show that the interlayer base plate interface was created due to the high plastic deformation and localized melting of the parent plates. At the collision point, both alloys behave like fluids, resulting in the formation of a wavy morphology with vortices, which is in good agreement with the experimental results.  相似文献   

13.
Barbara 《防务技术》2021,17(5):1740-1752
Ammonium nitrate and fuel oil (ANFO) based explosive is a classic example of non-ideal high explosives. Its detonation is characterized by a strong dependence of detonation parameters on explosive charge diameter, presence and characteristics of confinement, as well as incomplete consumption of explosive at the sonic point.In this work we propose a detonation model based on the Wood-Kirkwood (WK) theory coupled with the thermochemical code EXPLO5 and supplemented with reaction rate models. Our objective is to analyze the validity of the model for highly non-ideal ANFO explosives, with emphasis on effect of reaction rate models.It was found that both single-step and two-step pressure-based models can be calibrated to reproduce experimental detonation velocity-charge radius data of ANFO at radii significantly above the failure radius (i.e. for D/Did > ∼0.6). Single-step pressure-based model, with the pressure exponent equal to 1.4, proved to be the most accurate, even in the vicinity of the failure radius. The impact of the rate models is most evident on temporal (and spatial) distribution of flow parameters in detonation driving zone, especially when it comes to the conversion and width of detonation driving zone.  相似文献   

14.
《防务技术》2022,18(10):1914-1921
The monolithic foamed propellants with high densities were prepared by casting and two-step foaming processes. Glycidyl azide polymer (GAP) and isocyanate were used as the binder system and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW, CL-20) was employed as the energetic component. The newly designed formulation containing 60 % CL-20 produced a force constant of 1077 J/g and low flame temperature of 2817 K. Two foamed propellants with densities of 1.32 g/cm3 and 1.53 g/cm3 were fabricated by a confined foaming process and examined by closed bomb tests. The results revealed that porosity significantly affects burning performance. A size effect on combustion behaviors was observed for the foamed propellant with 5.56 % porosity, and a double-hump progressive dynamic vivacity curve was obtained. At last, the 30 mm gun test was carried out to demonstrate the interior ballistic performance, and the muzzle velocity increased by 120 m/s at the same maximum chamber pressure when monolithic propellant was added in the charge.  相似文献   

15.
《防务技术》2022,18(12):2181-2189
An adverse effect resulting from explosive mine blasts is the production of toxic nitrogen oxides (NO and NO2) and carbon monoxide (CO). The empirical measurements of the concentration of toxic gases showed that it depends not only on the composition of an explosive and properties of its ingredients but also on several other parameters, such as volume of blasting chamber, explosive charge mass and design, confinement characteristics, surrounding atmosphere, etc. That explains why measured concentrations of toxic gases reported in literature significantly differ.In this paper, we discuss the possibility of theoretical prediction of the concentration of toxic gases by thermochemical equilibrium calculation applying two models: ideal detonation model and deflagration model. It can be demonstrated that thermochemical calculations can provide a good estimation of the measured concentrations and reproduce experimentally obtained effects of additives on the production of toxic gases. It was also found that the ideal detonation model applies to heavily confined explosive charges, while the deflagration model is more suitable for low detonation velocity explosives with light confinement.  相似文献   

16.
爆炸逻辑间隙零门实验研究   总被引:2,自引:0,他引:2  
为了可靠实现爆炸逻辑间隙零门的原理功能,提出并验证了一种基于精细RDX和含能胶合剂的传爆药方案.通过实验探索了基于该传爆药的爆炸零门适用的间隙宽度范围,并设计了一种小尺寸爆炸逻辑间隙零门,为爆炸逻辑网络设计提供参考.  相似文献   

17.
This paper reviews the achievements in the field of synthesis of new thermally resistant explosive compounds in the years 2009 through 2019. The performance characteristics of these compounds (sensitivity, thermal decomposition parameters, and detonation parameters) were compared with those of 1,3,5-triamino-2,4,6-trinitrobenzene, which still seems to be an unrivalled model of a thermally resistant and generally low-sensitivity explosive material. New thermally stable explosives (TSEs) were found among macromolecular compounds with tri- and dinitrophenyl groups, nitro and amine-nitro derivatives of azoles, and polynitro derivatives of calixarenes. Some of them match TATB in terms of thermal resistance and additionally have higher detonation parameters.  相似文献   

18.
介绍了陆军武器装备火控系统的作战使命和工作原理,分析了信息化作战条件下,陆军武器火控系统的作用和使用需求,提出了未来陆军武器火控系统体系网络化、操纵智能化、功能一体化、性能精准化、结构模块化的发展趋势,分析了需对应突破的关键技术。  相似文献   

19.
《防务技术》2014,10(3):294-297
The detonation of an explosive atmosphere from liquefied petroleum gas disseminated in air in a confined space is studied using numerical modeling with software product ANSYS AUTODYN.  相似文献   

20.
为了研究爆炸冲击波对武器装备的损伤,建立了炸药爆炸冲击靶板的有限元模型,对不同厚度靶板在确定爆炸冲击环境下的损伤进行了仿真试验。不同于传统的宏观破口尺寸损伤表征参数,引入了等效塑性应变来精确描述靶板损伤,并提出了一种基于主成分分析理论对靶板损伤进行评估的方法。结果表明:利用该方法所得到的计算结果与理论分析结果完全一致。这说明基于多元统计分析的靶板损伤评估方法是切实可行的,可以进一步应用于装备爆炸损伤评估与易损性研究中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号