首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study a multi‐stage dynamic assignment interdiction (DAI) game in which two agents, a user and an attacker, compete in the underlying bipartite assignment graph. The user wishes to assign a set of tasks at the minimum cost, and the attacker seeks to interdict a subset of arcs to maximize the user's objective. The user assigns exactly one task per stage, and the assignment costs and interdiction impacts vary across stages. Before any stage commences in the game, the attacker can interdict arcs subject to a cardinality constraint. An interdicted arc can still be used by the user, but at an increased assignment cost. The goal is to find an optimal sequence of assignments, coupled with the attacker's optimal interdiction strategy. We prove that this problem is strongly NP‐hard, even when the attacker can interdict only one arc. We propose an exact exponential‐state dynamic‐programming algorithm for this problem as well as lower and upper bounds on the optimal objective function value. Our bounds are based on classical interdiction and robust optimization models, and on variations of the DAI game. We examine the efficiency of our algorithms and the quality of our bounds on a set of randomly generated instances. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 373–387, 2017  相似文献   

2.
A classical and important problem in stochastic inventory theory is to determine the order quantity (Q) and the reorder level (r) to minimize inventory holding and backorder costs subject to a service constraint that the fill rate, i.e., the fraction of demand satisfied by inventory in stock, is at least equal to a desired value. This problem is often hard to solve because the fill rate constraint is not convex in (Q, r) unless additional assumptions are made about the distribution of demand during the lead‐time. As a consequence, there are no known algorithms, other than exhaustive search, that are available for solving this problem in its full generality. Our paper derives the first known bounds to the fill‐rate constrained (Q, r) inventory problem. We derive upper and lower bounds for the optimal values of the order quantity and the reorder level for this problem that are independent of the distribution of demand during the lead time and its variance. We show that the classical economic order quantity is a lower bound on the optimal ordering quantity. We present an efficient solution procedure that exploits these bounds and has a guaranteed bound on the error. When the Lagrangian of the fill rate constraint is convex or when the fill rate constraint does not exist, our bounds can be used to enhance the efficiency of existing algorithms. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 635–656, 2000  相似文献   

3.
We consider the shortest path interdiction problem involving two agents, a leader and a follower, playing a Stackelberg game. The leader seeks to maximize the follower's minimum costs by interdicting certain arcs, thus increasing the travel time of those arcs. The follower may improve the network after the interdiction by lowering the costs of some arcs, subject to a cardinality budget restriction on arc improvements. The leader and the follower are both aware of all problem data, with the exception that the leader is unaware of the follower's improvement budget. The effectiveness of an interdiction action is given by the length of a shortest path after arc costs are adjusted by both the interdiction and improvement. We propose a multiobjective optimization model for this problem, with each objective corresponding to a different possible improvement budget value. We provide mathematical optimization techniques to generate a complete set of strategies that are Pareto‐optimal. Additionally, for the special case of series‐parallel graphs, we provide a dynamic‐programming algorithm for generating all Pareto‐optimal solutions.  相似文献   

4.
A procurement problem, as formulated by Murty [10], is that of determining how many pieces of equipment units of each of m types are to be purchased and how this equipment is to be distributed among n stations so as to maximize profit, subject to a budget constraint. We have considered a generalization of Murty's procurement problem and developed an approach using duality to exploit the special structure of this problem. By using our dual approach on Murty's original problem, we have been able to solve large problems (1840 integer variables) with very modest computational effort. The main feature of our approach is the idea of using the current evaluation of the dual problem to produce a good feasible solution to the primal problem. In turn, the availability of good feasible solutions to the primal makes it possible to use a very simple subgradient algorithm to solve the dual effectively.  相似文献   

5.
Several problems in the assignment of parallel redundant components to systems composed of elements subject to failure are considered. In each case the problem is to make an assignment which maximizes the system reliability subject to system constraints. Three distinct problems; are treated. The first is the classical problem of maximizing system reliability under total cost or weight constraints when components are subject to a single type of failure. The second problem deals with components which are subject to two types of failure and minimizes the probability of one mode of system failure subject to a constraint on the probability of the other mode of system failure. The third problem deals with components which may either fail to operate or may operate prematurely. System reliability is maximized subject to a constraint ori system safety. In each case the problem is formulated as an integer linear program. This has an advantage over alternative dynamic programming formulations in that standard algorithms may be employed to obtain numerical results.  相似文献   

6.
In this paper a model is developed for determining optimal strategies for two competing firms which are about to submit sealed tender bids on K contracts. A contract calls for the winning firm to supply a specific amount of a commodity at the bid price. By the same token, the production of that commodity involves various amounts of N different resources which each firm possesses in limited quantities. It is assumed that the same two firms bid on each contract and that each wants to determine a bidding strategy which will maximize its profits subject to the constraint that the firm must be able to produce the amount of products required to meet the contracts it wins. This bidding model is formulated as a sequence of bimatrix games coupled together by N resource constraints. Since the firms' strategy spaces are intertwined, the usual quadratic programming methods cannot be used to determine equilibrium strategies. In lieu of this a number of theorems are given which partially characterize such strategies. For the single resource problem techniques are developed for determining equilibrium strategies. In the multiple resource problem similar methods yield subequilibrium strategies or strategies that are equilibrium from at least one firm's point of view.  相似文献   

7.
We consider a system composed of k components, each of which is subject to failure if temperature is above a critical level. The failure of one component causes the failure of the system as a whole (a serially connected system). If zi is the critical temperature of the ith component then z* = min{zi: i = 1,2,…, k} is the critical level of the system. The components may be tested individually at different temperature levels, if the temperature is below the critical level the cost is $1, otherwise the test is destructive and the cost is m > 1 dollars. The purpose of this article is to construct, under a budgetary constraint, an efficient (in a minmax sense) testing procedure which will locate the critical level of the system with maximal accuracy.  相似文献   

8.
This article presents a new model for the development of Carl von Clausewitz’s thinking on the factors that constrain warfare. The model posits three stages in his thinking that are determined by two system theoretic dimensions. The three stages are friction as a constraint on the effectiveness of the execution of military plans on paper, suspension as a constraint on the intensity of military action and political objectives as a constraint on military objectives. The two dimensions consist of an interactive perspective in the form of causal feedback loops and a holistic perspective in the form of a political system that forms the context of the military subsystem.  相似文献   

9.
The first problem considered in this paper is concerned with the assembly of independent components into parallel systems so as to maximize the expected number of systems that perform satisfactorily. Associated with each component is a probability of it performing successfully. It is shown that an optimal assembly is obtained if the reliability of each assembled system can be made equal. If such equality is not attainable, then bounds are given so that the maximum expected number of systems that perform satisfactorily will lie within these stated bounds; the bounds being a function of an arbitrarily chosen assembly. An improvement algorithm is also presented. A second problem treated is concerned with the optimal design of a system. Instead of assembling given units, there is an opportunity to “control” their quality, i.e., the manufacturer is able to fix the probability, p, of a unit performing successfully. However, his resources, are limited so that a constraint is imposed on these probabilities. For (1) series systems, (2) parallel systems, and (3) k out of n systems, results are obtained for finding the optimal p's which maximize the reliability of a single system, and which maximize the expected number of systems that perform satisfactorily out of a total assembly of J systems.  相似文献   

10.
We study a knapsack problem with an additional minimum filling constraint, such that the total weight of selected items cannot be less than a given threshold. The problem has several applications in shipping, e‐commerce, and transportation service procurement. When the threshold equals the knapsack capacity, even finding a feasible solution to the problem is NP‐hard. Therefore, we consider the case when the ratio α of threshold to capacity is less than 1. For this case, we develop an approximation scheme that returns a feasible solution with a total profit not less than (1 ‐ ε) times the total profit of an optimal solution for any ε > 0, and with a running time polynomial in the number of items, 1/ε, and 1/(1‐α). © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

11.
We consider a class of network flow problems with pure quadratic costs and demonstrate that the conjugate gradient technique is highly effective for large-scale versions. It is shown that finding a saddle point for the Lagrangian of an m constraint, n variable network problem requires only the solution of an unconstrained quadratic programming problem with only m variables. It is demonstrated that the number of iterations for the conjugate gradient algorithm is substantially smaller than the number of variables or constraints in the (primal) network problem. Forty quadratic minimum-cost flow problems of various sizes up to 100 nodes are solved. Solution time for the largest problems (4,950 variables and 99 linear constraints) averaged 4 seconds on the CBC Cyber 70 Model 72 computer.  相似文献   

12.
A system is subject to a sequence of randomly occurring shocks. Each shock causes a random amount of damage which accumulates additively. Any of the shocks might cause the system to fail. The shock process is in some sense related to an environmental process in order to describe randomly varying external factors of an economical and/or technical nature as well as internal factors of a statistical nature. A discrete time formulation of the problem is given. Sufficient conditions are found for optimality of a generalized control-limit rule with respect to the total cost criterion: Whenever the accumulated damage s is not less than a specified critical number t(i), depending on the environmental state i, replace the system by a new one; otherwise do not replace it. Moreover, bounds are given for these critical numbers.  相似文献   

13.
We consider the scheduling of n jobs on m identical machines when the jobs become available for processing at ready times ai, ai, ? 0, require di time units for processing and must be completed by times bi for i = 1, 2, … n. The objective chosen is that of minimizing the total elapsed time to complete all jobs subject to the ready time and due date constraints, preemption is not allowed. We present a multi-stage solution algorithm for this problem that is based on an implicit enumeration procedure and also uses the labelling type algorithm which solves the problem when preemption is allowed.  相似文献   

14.
We consider an integrated usage and maintenance optimization problem for a k‐out‐of‐n system pertaining to a moving asset. The k‐out‐of‐n systems are commonly utilized in practice to increase availability, where n denotes the total number of parallel and identical units and k the number of units required to be active for a functional system. Moving assets such as aircraft, ships, and submarines are subject to different operating modes. Operating modes can dictate not only the number of system units that are needed to be active, but also where the moving asset physically is, and under which environmental conditions it operates. We use the intrinsic age concept to model the degradation process. The intrinsic age is analogous to an intrinsic clock which ticks on a different pace in different operating modes. In our problem setting, the number of active units, degradation rates of active and standby units, maintenance costs, and type of economic dependencies are functions of operating modes. In each operating mode, the decision maker should decide on the set of units to activate (usage decision) and the set of units to maintain (maintenance decision). Since the degradation rate differs for active and standby units, the units to be maintained depend on the units that have been activated, and vice versa. In order to minimize maintenance costs, usage and maintenance decisions should be jointly optimized. We formulate this problem as a Markov decision process and provide some structural properties of the optimal policy. Moreover, we assess the performance of usage policies that are commonly implemented for maritime systems. We show that the cost increase resulting from these policies is up to 27% for realistic settings. Our numerical experiments demonstrate the cases in which joint usage and maintenance optimization is more valuable. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 418–434, 2017  相似文献   

15.
In this paper, we study the on‐line parameter estimation problem for a partially observable system subject to deterioration and random failure. The state of the system evolves according to a continuous time homogeneous Markov process with a finite state space. The system state is not observable, except for the failure state. The information related to the system state is available at discrete times through inspections. A recursive maximum likelihood (RML) algorithm is proposed for the on‐line parameter estimation of the model. The RML algorithm proposed in the paper is considerably faster and easier to apply than other RML algorithms in the literature, because it does not require projection into the constraint domain and calculation of the gradient on the surface of the constraint manifolds. The algorithm is illustrated by an example using real vibration data. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

16.
The resource leveling problem for a construction system producing a stream of output units is considered. The system is modeled using a critical-path-analysis activity network, from which an extended network is developed for an integrated planning effort of all output units. Activity intensity variables are defined which measure activity demand rates for resources and consequent activity durations for the production of each output unit. A heuristic approach consisting of an iterative nonlinear programming procedure is presented which computes activity durations (intensities) for the minimization of resource capacity costs subject to meeting construction due dates. The application to a major ship overhaul project is described, in which the procedure was used to level workloads of the various labor–trade shops.  相似文献   

17.
This paper considers the problem of finding optimal solutions to a class of separable constrained extremal problems involving nonlinear functionals. The results are proved for rather general situations, but they may be easily stated for the case of search for a stationary object whose a priori location distribution is given by a density function on R, a subset of Euclidean n-space. The functional to be optimized in this case is the probability of detection and the constraint is on the amount of effort to be used Suppose that a search of the above type is conducted in such a manner as to produce the maximum increase in probability of detection for each increment of effort added to the search. Then under very weak assumptions, it is proven that this search will produce an optimal allocation of the total effort involved. Under some additional assumptions, it is shown that any amount of search effort may be allocated in an optimal fashion.  相似文献   

18.
In this paper we deal with the d‐dimensional vector packing problem, which is a generalization of the classical bin packing problem in which each item has d distinct weights and each bin has d corresponding capacities. We address the case in which the vectors of weights associated with the items are totally ordered, i.e., given any two weight vectors ai, aj, either ai is componentwise not smaller than aj or aj is componentwise not smaller than ai. An asymptotic polynomial‐time approximation scheme is constructed for this case. As a corollary, we also obtain such a scheme for the bin packing problem with cardinality constraint, whose existence was an open question to the best of our knowledge. We also extend the result to instances with constant Dilworth number, i.e., instances where the set of items can be partitioned into a constant number of totally ordered subsets. We use ideas from classical and recent approximation schemes for related problems, as well as a nontrivial procedure to round an LP solution associated with the packing of the small items. © 2002 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

19.
The problem considered is to assign n jobs to two processors so as to minimize the total flow time, with the constraint that a predetermined partial ordering (induced by batch arrivals) must be preserved within the subset of jobs assigned to each processor. An efficient algorithm of time 0(n5) is developed, and computational experience is reported.  相似文献   

20.
This article treats the problem of determining optimal and approximately optimal order quantities for a multiple-item inventory system subject to a single constraint on space or budget. Although this problem can be solved by the usual method of Lagrange multipliers, we wish to consider a more efficient scheme that requires fewer computations. We provide calculations that compare and contrast four approximation techniques. In particular, we have discovered a method that yields a direct algebraic expression of the problem parameters for allocation and achieves an expected profit within 90% of the optimal in about 90% of the cases tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号