首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
考虑了二阶线性系统的比例微分(PD)反馈特征结构配置问题以及其在最优控制问题中的应用。基于比例微分特征结构配置参数化方法,将二阶线性系统的最优控制问题转化为一个便于求解的有约束条件的极小值问题,并给出了相应的求解算法。三自由度质量弹簧阻尼系统算例及其仿真结果表明所提算法简单、有效。  相似文献   

2.
3.
The component placement problem is a specialization of the quadratic assignment problem that has been extensively studied for a decade and which is of considerable practical value. Recently, interest in component placement algorithms has risen primarily as a result of increased activity in the field of computer-aided design automation. This paper deals with the methodology of component placement and is based on the results of considerable operational experience. A tutorial presentation of tree search placement algorithms is provided, and an improved placement procedure is described which is demonstrated to be effective in generating near optimal solutions to the component placement problem. These solutions are completely reproducible and are obtained at an acceptable expenditure of computational resources. An additional objective is an assessment of performance of the class of near optimal algorithms. In particular, the question- how close to optimal are the near optimal solutions- is examined.  相似文献   

4.
In this paper we have applied the mathematical control theory to the accounting network flows, where the flow rates are constrained by linear inequalities. The optimal control policy is of the “generalized bang-bang” variety which is obtained by solving at each instant in time a linear programming problem whose objective function parameters are determined by the “switching function” which is derived from the Hamiltonian function. The interpretation of the adjoint variables of the control problem and the dual evaluators of the linear programming problem demonstrates an interesting interaction of the cross section phase of the problem, which is characterized by linear programming, and the dynamic phase of the problem, which is characterized by control theory.  相似文献   

5.
The bilevel programming problem (BLPP) is a sequence of two optimization problems where the constraint region of the first is determined implicitly by the solution to the second. In this article it is first shown that the linear BLPP is equivalent to maximizing a linear function over a feasible region comprised of connected faces and edges of the original polyhedral constraint set. The solution is shown to occur at a vertex of that set. Next, under assumptions of differentiability, first-order necessary optimality conditions are developed for the more general BLPP, and a potentially equivalent mathematical program is formulated. Finally, the relationship between the solution to this problem and Pareto optimality is discussed and a number of examples given.  相似文献   

6.
We consider the component testing problem of a system where the main feature is that the component failure rates are not constant parameters, but they change in a dynamic fashion with respect to time. More precisely, each component has a piecewise-constant failure-rate function such that the lifetime distribution is exponential with a constant rate over local intervals of time within the overall mission time. There are several such intervals, and the rates change dynamically from one interval to another. We note that these lifetime distributions can also be used in a more general setting to approximate arbitrary lifetime distributions. The optimal component testing problem is formulated as a semi-infinite linear program. We present an algorithmic procedure to compute optimal test times based on the column-generation technique and illustrate it with a numerical example. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 187–197, 1997  相似文献   

7.
We show that the well-known necessary and sufficient conditions for a relative maximum of a nonlinear differentiable objective function with nonnegative variables constrained by nonlinear differentiable inequalities may be derived using the classical theory of equality constrained optimization problems with unrestricted variables. To do this we transform the original inequality-constrained problem to an equivalent equality-constrained problem by means of a well-known squared-variable transformation. Our major result is to show that second order conditions must be used to obtain the Kuhn-Tucker conditions by this approach. Our nonlinear programming results are motivated by the development of some well-known linear programming results by this approach.  相似文献   

8.
In this article, we study item shuffling (IS) problems arising in the logistics system of steel production. An IS problem here is to optimize shuffling operations needed in retrieving a sequence of steel items from a warehouse served by a crane. There are two types of such problems, plate shuffling problems (PSP) and coil shuffling problems (CSP), considering the item shapes. The PSP is modeled as a container storage location assignment problem. For CSP, a novel linear integer programming model is formulated considering the practical stacking and shuffling features. Several valid inequalities are constructed to accelerate the solving of the models. Some properties of optimal solutions of PSP and CSP are also derived. Because of the strong NP‐hardness of the problems, we consider some special cases of them and propose polynomial time algorithms to obtain optimal solutions for these cases. A greedy heuristic is proposed to solve the general problems and its worst‐case performances on both PSP and CSP are analyzed. A tabu search (TS) method with a tabu list of variable length is proposed to further improve the heuristic solutions. Without considering the crane traveling distance, we then construct a rolling variable horizon heuristic for the problems. Numerical experiments show that the proposed heuristic algorithms and the TS method are effective. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

9.
This paper studies the one-period, general network distribution problem with linear costs. The approach is to decompose the problem into a transportation problem that represents a stocking decision, and into decoupled newsboy problems that represent the realization of demand with the usual associated holding and shortage costs. This approach leads to a characterization of optimal policies in terms of the dual of the transportation problem. This method is not directly suitable for the solution for large problems, but the exact solution for small problems can be obtained. For the numerical solutions of large problems, the problem has been formulated as a linear program with column generation. This latter approach is quite robust in the sense that it is easily extended to incorporate capacity constraints and the multiproduct case.  相似文献   

10.
A branch and bound algorithm is developed for a class of allocation problems in which some constraint coefficients depend on the values of certain of the decision variables. Were it not for these dependencies, the problems could be solved by linear programming. The algorithm is developed in terms of a strategic deployment problem in which it is desired to find a least-cost transportation fleet, subject to constraints on men/materiel requirements in the event of certain hypothesized contingencies. Among the transportation vehicles available for selection are aircraft which exhibit the characteristic that the amount of goods deliverable by an aircraft on a particular route in a given time period (called aircraft productivity and measured in kilotons/aircraft/month) depends on the ratio of type 1 to type 2 aircraft used on that particular route. A model is formulated in which these relationships are first approximated by piecewise linear functions. A branch and bound algorithm for solving the resultant nonlinear problem is then presented; the algorithm solves a sequence of linear programming problems. The algorithm is illustrated by a sample problem and comments concerning its practicality are made.  相似文献   

11.
The reformulation‐linearization technique (RLT) is a methodology for constructing tight linear programming relaxations of mixed discrete problems. A key construct is the multiplication of “product factors” of the discrete variables with problem constraints to form polynomial restrictions, which are subsequently linearized. For special problem forms, the structure of these linearized constraints tends to suggest that certain classes may be more beneficial than others. We examine the usefulness of subsets of constraints for a family of 0–1 quadratic multidimensional knapsack programs and perform extensive computational tests on a classical special case known as the 0–1 quadratic knapsack problem. We consider RLT forms both with and without these inequalities, and their comparisons with linearizations derived from published methods. Interestingly, the computational results depend in part upon the commercial software used. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

12.
The Weber Problem generalized to the location of several new points with respect to existing points is formulated as a linear programming problem under the assumption that distances are rectangular. The dual problem is then formulated and subsequently reduced to a problem with substantially fewer variables and constraints than required by an existent alternative linear programming formulation. Flows may exist between new as well as between new and existing points. Linear constraints can be imposed to restrict the location of new points. Pairwise constraints limiting distances between new points and between new and existing points can also be accommodated.  相似文献   

13.
In Assemble‐To‐Order (ATO) systems, situations may arise in which customer demand must be backlogged due to a shortage of some components, leaving available stock of other components unused. Such unused component stock is called remnant stock. Remnant stock is a consequence of both component ordering decisions and decisions regarding allocation of components to end‐product demand. In this article, we examine periodic‐review ATO systems under linear holding and backlogging costs with a component installation stock policy and a First‐Come‐First‐Served (FCFS) allocation policy. We show that the FCFS allocation policy decouples the problem of optimal component allocation over time into deterministic period‐by‐period optimal component allocation problems. We denote the optimal allocation of components to end‐product demand as multimatching. We solve the multi‐matching problem by an iterative algorithm. In addition, an approximation scheme for the joint replenishment and allocation optimization problem with both upper and lower bounds is proposed. Numerical experiments for base‐stock component replenishment policies show that under optimal base‐stock policies and optimal allocation, remnant stock holding costs must be taken into account. Finally, joint optimization incorporating optimal FCFS component allocation is valuable because it provides a benchmark against which heuristic methods can be compared. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 158–169, 2015  相似文献   

14.
In this paper we present a new formulation of the quadratic assignment problem. This is done by transforming the quadratic objective function into a linear objective function by introducing a number of new variables and constraints. The resulting problem is a 0-1 linear integer program with a highly specialized structure. This permits the use of the partitioning scheme of Benders where only the original variables need be considered. The algorithm described thus iterates between two problems. The master problem is a pure 0-1 integer program, and the subproblem is a transportation problem whose optimal solution is shown to be readily available from the master problem in closed form. Computational experience on problems available in the literature is provided.  相似文献   

15.
This article considers the empty vehicle redistribution problem in a hub‐and‐spoke transportation system, with random demands and stochastic transportation times. An event‐driven model is formulated, which yields the implicit optimal control policy. Based on the analytical results for two‐depot systems, a dynamic decomposition procedure is presented which produces a near‐optimal policy with linear computational complexity in terms of the number of spokes. The resulting policy has the same asymptotic behavior as that of the optimal policy. It is found that the threshold‐type control policy is not usually optimal in such systems. The results are illustrated through small‐scale numerical examples. Through simulation the robustness of the dynamic decomposition policy is tested using a variety of scenarios: more spokes, more vehicles, different combinations of distribution types for the empty vehicle travel times and loaded vehicle arrivals. This shows that the dynamic decomposition policy is significantly better than a heuristics policy in all scenarios and appears to be robust to the assumptions of the distribution types. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

16.
This paper considers a logistics system modelled as a transportation problem with a linear cost structure and lower bounds on supply from each origin and to each destination. We provide an algorithm for obtaining the growth path of such a system, i. e., determining the optimum shipment patterns and supply levels from origins and to destinations, when the total volume handled in the system is increased. Extensions of the procedure for the case when the costs of supplying are convex and piecewise linear and for solving transportation problems that are not in “standard form” are discussed. A procedure is provided for determining optimal plant capacities when the market requirements have prespecified growth rates. A goal programming growth model where the minimum requirements are treated as goals rather than as absolute requirements is also formulated.  相似文献   

17.
The parallel machine replacement problem consists of finding a minimum cost replacement policy for a finite population of economically interdependent machines. In this paper, we formulate a stochastic version of the problem and analyze the structure of optimal policies under general classes of replacement cost functions. We prove that for problems with arbitrary cost functions, there can be optimal policies where a machine is replaced only if all machines in worse states are replaced (Worse Cluster Replacement Rule). We then show that, for problems with replacement cost functions exhibiting nonincreasing marginal costs, there are optimal policies such that, in any stage, machines in the same state are either all kept or all replaced (No‐Splitting Rule). We also present an example that shows that economies of scale in replacement costs do not guarantee optimal policies that satisfy the No‐Splitting Rule. These results lead to the fundamental insight that replacement decisions are driven by marginal costs, and not by economies of scale as suggested in the literature. Finally, we describe how the optimal policy structure, i.e., the No‐Splitting and Worse Cluster Replacement Rules, can be used to reduce the computational effort required to obtain optimal replacement policies. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

18.
Applications for content distribution over networks, such as Video‐on‐Demand (VOD), are expected to grow significantly over time. Effective bandwidth allocation schemes that can be repeatedly executed must be deployed since new programs are often installed at various servers while other are deleted. We present a model for bandwidth allocation in a content distribution network that consists of multiple trees, where the root of each tree has a server that broadcasts multiple programs throughout the tree. Each network link has limited capacity and may be used by one or more of these trees. The model is formulated as an equitable resource allocation problem with a lexicographic maximin objective function that attempts to provide equitable service performance for all requested programs at the various nodes. The constraints include link capacity constraints and tree‐like ordering constraints imposed on each of the programs. We present an algorithm that provides an equitable solution in polynomial time for certain performance functions. At each iteration, the algorithm solves single‐link maximin optimization problems while relaxing the ordering constraints. The algorithm selects a bottleneck link, fixes various variables at their lexicographic optimal solution while enforcing the ordering constraints, and proceeds with the next iteration. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

19.
A set of edges D called an isolation set, is said to isolate a set of nodes R from an undirected network if every chain between the nodes in R contains at least one edge from the set D. Associated with each edge of the network is a positive cost. The isolation problem is concerned with finding an isolation set such that the sum of its edge costs is a minimum. This paper formulates the problem of determining the minimal cost isolation as a 0–1 integer linear programming problem. An algorithm is presented which applies a branch and bound enumerative scheme to a decomposed linear program whose dual subproblems are minimal cost network flow problems. Computational results are given. The problem is also formulated as a special quadratic assignment problem and an algorithm is presented that finds a local optimal solution. This local solution is used for an initial bound.  相似文献   

20.
We introduce a multi‐period tree network maintenance scheduling model and investigate the effect of maintenance capacity restrictions on traffic/information flow interruptions. Network maintenance refers to activities that are performed to keep a network operational. For linear networks with uniform flow between every pair of nodes, we devise a polynomial‐time combinatorial algorithm that minimizes flow disruption. The spiral structure of the optimal maintenance schedule sheds insights into general network maintenance scheduling. The maintenance problem on linear networks with a general flow structure is strongly NP‐hard. We formulate this problem as a linear integer program, derive strong valid inequalities, and conduct a polyhedral study of the formulation. Polyhedral analysis shows that the relaxation of our linear network formulation is tight when capacities and flows are uniform. The linear network formulation is then extended to an integer program for solving the tree network maintenance scheduling problem. Preliminary computations indicate that the strengthened formulations can solve reasonably sized problems on tree networks and that the intuitions gained from the uniform flow case continue to hold in general settings. Finally, we extend the approach to directed networks and to maintenance of network nodes. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号