首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 235 毫秒
1.
针对以永磁同步电机为执行机构的位置伺服系统,提出了一种单神经元自适应分数阶PDμ控制器。首先建立了永磁同步电机位置伺服系统的简化模型,然后利用神经元自适应及自学习的能力,将单神经元自适应算法与分数阶控制理论相结合,完成了单神经元自适应分数阶PDμ控制器,选择了3个单神经元分别对分数阶PDμ控制器的3个参数进行在线自适应整定,控制器的参数可以根据系统的偏差进行实时调整。仿真结果表明,本方法可使系统获得更好的跟踪特性、抗扰特性及鲁棒特性。  相似文献   

2.
将变结构自适应PID控制及模糊控制两种控制技术相结合,设计了一种新型的变结构自适应模糊PID位置控制器。采用变结构自适应PID控制器进行误差控制,对前馈参数采用模糊控制方法进行在线整定,实现了前馈补偿与误差控制的精确匹配,进一步抑制系统抖动现象,提高系统跟踪精度。试验结果表明,将变结构自适应模糊PID位置控制器应用于数字交流随动系统的位置控制中,既能保证系统的稳定性和快速性,又具有很好的跟踪精度,较好地解决了随动系统跟踪精度、稳定性、快速性要求高,参数难以相互协调匹配的问题,大大改善系统闭环响应的品质,提高了系统的控制性能。  相似文献   

3.
气动测量仪以其精度较高、工作可靠和操作维护方便等特点被广泛应用于精密测量中.但由于其测量范围小,制约了它的进一步发展.为此,观研制了一种具有微电脑补偿的数字式气动测量仪.本文介绍了其工作原理及软硬件设计,并且对补偿值修正模型和扩大测量范围进行了理论分析,给出了测量仪与其它仪器的对比试验数据.研究结果表明,具有微电脑补偿的数字式气动测量仪与其它类型的气动测量仪相比,在保证同等精度的情况下,其测量范围成倍增加.  相似文献   

4.
将通道间的耦合项看作是不确定项,对非自旋弹头的姿态运动模型进行了变形和简化.为了解决滑模控制的消除颤振与控制精度之间的矛盾,提出了一种采用指数衰减型边界层的无颤振滑模控制器.它既可以有效地抑制颤振,又保证了较高的控制精度.采用简单的自适应算法来更新控制器参数,对不确定项的上界进行估计.仿真分析表明,所提出的无颤振滑模控制器是很有效的.  相似文献   

5.
浮球式惯导平台的自适应模糊滑模稳定控制   总被引:2,自引:2,他引:0       下载免费PDF全文
针对浮球式惯导平台的惯性空间稳定问题,提出了一种基于模糊逻辑的自适应滑模控制方案。该方法利用滑模控制器保证了系统的稳定性和快速性,解决了浮球式惯导平台参数不确定、未建模动态等未知干扰问题;然后,基于滑模控制器的设计问题,利用模糊逻辑和自适应控制律,调节滑模控制器的参数,估计并补偿系统的外界干扰及不确定性等干扰,增强系统对随机不确定性的适应能力,提高控制系统的鲁棒性和控制精度;最后,利用Laypunov方法证明了控制系统的稳定性与收敛性。仿真结果表明,该方法可以有效减低滑模控制控制输入抖振问题,实现浮球式惯导平台的高精度惯性空间稳定,且稳定精度高于 。  相似文献   

6.
GKD-1 RRC是为开展机器人力反馈顺应控制的研究而设计的新型机器人实时控制器。本文介绍了它的主要性能、特点,并对用它在PUMA 562机械手上完成的几个典型的力/位置混合控制实验及其控制策略、实验结果进行了说明。实验表明,以GKD-1 RRC为核心的机器人力控制系统,控制周期仅为4.88ms,力控制稳态误差平均小于100g,位置控制精度不低于机械手原有水平,证明GKD-1 RRC控制器性能优越。  相似文献   

7.
针对多管火箭炮交流位置伺服系统转动惯量和负载力矩变化大的特性,设计了自适应模糊滑模位置控制器.用模糊控制逼近理想滑模控制,设计切换控制补偿逼近误差,自适应控制调节模糊参数和切换控制的不确定上界.为了保证系统渐进稳定和可控,根据李亚普函数导出自适应率.仿真结果表明该控制策略不仅保证了系统的静、动态特性,而且对负载扰动和系统参数摄动具有较强的鲁棒性.  相似文献   

8.
应用基于CGT的直接自适应控制原理,设计了一种坦克炮控系统自适应控制器.采用并联补偿的方法,解决了被控对象的非严格正实性问题,满足了基于CGT的直接自适应控制方法的要求.该算法无需辨识系统的参数,结构简单,对参数变化的适应能力强.仿真试验表明,这种方法正确可行.  相似文献   

9.
针对高超声速飞行器参数不确定弹性体模型,提出了一种基于非线性干扰观测器的自适应反演控制器设计方法。将曲线拟合模型表示为严格反馈形式,采用反演方法设计控制器。采用动态面方法获取虚拟控制量的导数,避免了传统反演控制"微分项膨胀"问题。为了增强控制器的鲁棒性,基于二阶跟踪-微分器设计了一种新型非线性干扰观测器,以此对模型不确定项进行自适应估计和补偿。仿真结果表明,控制器对模型不确定性和气动弹性影响具有强鲁棒性,且能实现对速度和高度参考指令的稳定跟踪。  相似文献   

10.
文中提出了采用前馈动力学补偿和实时动力学补偿的两种机器人位置/力混合控制器。仿真结果显示了这两种动力学补偿的有效性。由于动力学补偿的引入、机器人位置/力混合控制系统的性能得到明显改善。  相似文献   

11.
针对该实时稳定控制系统中某一大功率、大变负载的某高精度位置伺服系统设计了模糊自适应P ID控制器,介绍了大量的静态、动态试验,并给出了在不同状态下的实际实验结果。试验表明:该控制器有良好的控制效果及鲁棒性,较好地解决了该武器系统中火控系统的动态响应。  相似文献   

12.
改进火炮拖动随动系统跟随特性的方法   总被引:3,自引:0,他引:3  
为了提高火炮拖动随动系统跟随误差精度,在三环伺服控制系统的基础上,提出了一种经典控制和智能控制相结合的方法.利用误差补偿的思想,在位置环采用前馈校正和超前校正的复合控制.采用模糊PI参数自整定控制的思想,在速度环上设计了智能模糊控制器.仿真结果表明,与PID控制系统相比较,系统的动态误差精度从10-3提高到10-4,明显地增强了火炮拖动随动系统的动态跟随特性,并使系统具有较强的鲁棒性.  相似文献   

13.
导弹发射装置伺服系统模糊PID控制研究   总被引:1,自引:0,他引:1  
在某型导弹发射装置的伺服系统中,对系统的性能指标要求很高,传统的PID控制往往难以满足要求。以某型导弹发射装置的伺服系统为模型,设计了模糊PID控制器。通过与传统的PID控制器仿真实验对比,可以看出应用模糊PID控制器能够有效提高该伺服系统的动态性能和鲁棒稳定性。  相似文献   

14.
针对某同源平衡及定位电液伺服系统,设计了一种用于该系统的模糊分数阶PID控制器。使用模糊规则来调节分数阶PID的参数,提高了分数阶PID控制器的响应速度,增强了分数阶PID鲁棒性。模糊分数阶PID控制器能使系统很快进入稳定状态,比分数阶PID控制器表现出较好的控制性能。通过半实物仿真实验可知模糊分数阶PID控制器在响应速度、超调量及稳定误差等方面均优于分数阶PID控制器,且对外部负载扰动具有较好的鲁棒性。  相似文献   

15.
变结构控制器集中了非线性控制与线性控制的优点,既保证了系统的快速性,又具有良好的跟踪精度。运用控制理论及牛顿运动规律,阐述了变结构控制器的建模机理,重点研究在MATLAB/SIMULINK动态系统仿真环境下,利用已有模块搭建变结构控制器的仿真模型。该仿真模型已被成功地应用于某型自行高炮随动系统的仿真研究中。  相似文献   

16.
电液伺服系统的模糊神经网络自适应控制   总被引:1,自引:0,他引:1  
针对电液伺服控制系统中存在的非线性影响,常规PID控制难以取得良好的控制效果,采用模糊神经网络自适应控制,通过BP算法改变模糊隶属函数的形状及模糊规则的中心值,实验结果表明该方法能有效地跟踪电液位置伺服系统。  相似文献   

17.
坦克稳定器的自抗扰控制算法   总被引:1,自引:0,他引:1  
为解决坦克稳定器中存在的传动间隙、干摩擦等强非线性问题,提高系统的鲁棒性,基于自抗扰控制器(ADRC)原理,提出了适用于坦克稳定器的自抗扰控制器,并进行了计算机仿真和试验验证。证明了自抗扰控制算法在坦克稳定器设计中的可行性。  相似文献   

18.
一种采用自适应遗传算法的模糊自整定控制器   总被引:1,自引:1,他引:0  
针对模糊自整定控制器参数寻优能力差的不足,研究了采用自适应交叉概率与变异概率的遗传算法,提出了用这种自适应遗传算法改善模糊自整定控制器性能的方法。对采用自适应遗传算法的模糊自整定控制器与一般的模糊自适应控制器作了仿真对比研究,说明了前者的优越性。  相似文献   

19.
为了解决直线电机伺服系统跟踪速度与峰化现象之间的矛盾,设计一种基于非线性扩张状态观测器的比例微分(Proportion Differentiation,PD)控制器。将直线电机伺服系统中的未建模动态和外界干扰定义为总和扰动并扩充为系统新的状态变量,利用非线性扩张状态观测器(Non Linear Extended State Observer,NLESO)估计不可测量的直线电机动子速度以及总和扰动。利用NLESO和跟踪微分器TD的输出,基于动态补偿线性化思想设计了引入补偿量的PD控制器,并给出了闭环控制系统稳定性证明。在Googol公司的实验平台上,通过与两种基于LESO的PD控制器对比,验证了所设计的基于NLESO的PD控制器的可行性。实验结果表明,基于NLESO的PD控制器可使直线电机伺服系统具有跟踪速度快、跟踪精度高、峰化现象小、鲁棒性强的优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号